Evaluating Countries and Products in international trade

An Evolutionary Bipartite Graph Approach

Xiang Niu Yu Chen

niux2@rpi.edu cheny39@rpi.edu

Two Questions?

In International trade

Which countries do better?

Which products are more "valuable"?

Let's call them "Great" countries and products!

Hypotheses

Criteria for "Great" countries

1) Such countries export many "Great" products.

2) Such countries **do not really depend** on any other specific country.

3) Such countries export some products which other "Great" countries import.

Hypotheses (cont'd)

Criteria for "Great" products

1) Such products are **imported a lot**.

2) Such products are imported by many "Great" countries.

Intuitions

For "Great" countries

- 1) A country makes money by exporting products to other countries.
- 2) A country spends money by importing products from other countries.
- 3) "Great" countries make more money at last.

For "Great" products

1) "Great" products are **imported** by "Great" countries a lot.

Dataset

Internal dataset Attributes

Finance (1991-2014): Imports/Exports data

Finance (2004-2014): Imports/Exports data

External dataset Trade Network

OEC: Imports/Exports data (1962-2014)

OEC: The Observatory of Economic Complexity

Bipartite Network

Country Ranking

Ranking

Evolutional Model

Product Value

National Wealth

Technical details

Country-to-Product transition matrix

	w_{11}	w_{12}	w_{13}		w_{1m}
U =	w_{21}	w_{22}	w_{23}		w_{2m}
	:	÷	÷	۰.	:
	w_{n1}	w_{n2}	w_{n3}		w_{nm}

Product-to-Country transition matrix

$$V = \begin{bmatrix} v_{11} & v_{12} & v_{13} & \dots & v_{1n} \\ v_{21} & v_{22} & v_{23} & \dots & v_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{m1} & v_{m2} & v_{m3} & \dots & v_{mn} \end{bmatrix}$$

Country-to-Country transition matrix

$$M = U \cdot V$$

Technical details (cont'd)

Bipartite Model

Denote \vec{a} as the 1-by-n country score vector.

M is the Country-to-Country transition matrix. Note that it's also a right stochastic matrix

Do power iterations as follows:

$$\vec{a}' = \vec{a} \cdot M$$

Note that we are **guaranteed** to get a converged

which is an approximation of the largest eigenvector of matrix

Furthermore, we can easily get the converged product score vector which is denoted as

$$\vec{b}^* = \vec{a}^* \cdot U$$

Technical details (cont'd)

Evolutionary Model

What if we want to apply our model into **a period of time** rather than a single year?

Cumulative transition matrix!

$$M = M_1 \cdot M_2 \dots M_t$$

Then do the same thing as we did before.

$$\vec{a}' = \vec{a} \cdot M$$
 $\vec{b}^* = \vec{a}^* \cdot U$

To make our evolutionary model more accurate, we allow each country only use a_{α} factor of earnings to import products which works well in practice.

Open Questions & Future Work

Are our bipartite and evolutionary models general enough?

More data, more experiments!

Is doing well in exports a necessary condition to win in international trac

Yes!!? **Big** question, go deeper!