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Why Graphs?
Imagine this as a

* Graphs are a general teacher-student graph s o Eingse.

Ianguage for descrlblng L Exp. (Senior, Junior...)
and modeling complex g ‘ e = Position (Prof., AP..)

systems _ g

Student ——— Grading (100, 90-+..)

Gender (M/F)

T~ Degree (PhD, MS..)

g

Graph Topology +  Node Type + Node Atfribute

Graph = Graph Topology + Node Type + Node Attribute + Edge Type + Edge Attribute
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Graph-structured Data Are Ubiquitous
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Graph = Graph Topology + Node Type + Node Attribute + Edge Type + Edge Attribute



Graph Machine Learning: Recent Trending

Graph Machine Learning is on fire @&
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Graph Neural Networks: A Brief History

Year 2019-2021 Year 2022

Y.ear 2016, 2017 GNN-based applications, Most comprehensive GNNs
First GRU-based Modemn such as search, recommendation, Book (by Dr. L. Wu et al.):
GNN paper: GGNN drug discovery, NLP, Transport... "Graph Neural Networks:
First graph convolution-based Many open-source libraries Foundations, Frontiers,
E?\lplsg ﬁi(;%r)sltal’t a new era of like DGL, Pytorch Geometric, DIG, Applications” by Springer

Graph4NLP, TorchDrug...

Year 2017-2021 Year 2021
A series of Graph Convolution 3 GNN books released simultaneously:
(GCN), Message Passage 1) Prof. Liu (Tsinghua) et al.:
Year 2009 ,, : p
. (MPNN, GraphSage, GIN), Introduction to Graph Neural Networks
First GN!\I Paper Attention-based (GAT), 2 ) Prof. Tang (MSU) et al.:
(Scarselli et al,, 2009) Unsupervised GNNs (Graph- "Deep learning on graphs”
Autoencoder, graph-infomax) 3 ) Prof. Hamilton (McGill):

Many new GNNs fast developed! Graph representation learning 7



Machine Learning on Graphs Tasks

Classical ML tasks on graphs: Recent ML tasks on graphs:
* Node classification  Expressive power of GNNs
= Predict a type of a given node = Theoretical understanding
* Link prediction * Scalability of GNNs
= Predict whether two nodes are linked = Sampling paradigms for scaling up
e Community detection  Adversarial robustness of GNNs
= |dentify densely linked clusters of nodes = Adversarial attacks and provable robustness
* Graph similarity  Graph structure learning for GNNs
= How similar are two (sub)graphs = Learning optimal graph structures for GNNs

Wu, Lingfei, et al. “Graph Neural Networks: Foundations, Frontiers, and Applications.”



Modeling Graphs with Graph Neural Networks

Updated representations of
nodes/edges

Input representations of
nodes/edges



Graph Neural Networks: Basic Model

* Key idea: Generate node embeddings based on local
neighborhoods.

TARGET NODE

i

/ﬂAk\

INPUT GRAPH
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GNN Model: Neighborhood Aggregation

* Intuition: Network neighborhood defines a computation graph

Every node defines a unique
computation graph!

INPUT GRAPH
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GNN Model: Neighborhood Aggregation

* Nodes have embeddings at each layer.
* Model can have arbitrary depth.

* “layer-0” embedding of nodeiis its input feature, i.e. xi.

Layer-0
Layer-1 o, @® X,
TARGET NODE ‘ 4‘< ............................. © x.
l Laye r' 2 . 7’ . 4 ’ ‘ X A
K . A ........... ‘ XB
N < i
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Overview of GNN Model

1) Define node aggregation and update functions

TARGET NODE

l

INPUT GRAPH

2) Define a loss function on the embeddings, L(z,)
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Overview of GNN Model

3) Train on a set of nodes, i.e., a batch
of computation graphs

INPUT GRAPH
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Overview of GNN Model

4) Generate embeddings for nodes as needed

Even for nodes we never trained on!
— Inductive learning
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GNN Model: A Case Study

* Basic approach: Average neighbor information and apply a

neural network
1) average messages

TARGET NODE from neighbors

l ’
s,
s,
\ //
s,
s,
s,
\f
@«

INPUT GRAPH
2) apply neural network



GNN Model: A Case Study

* Basic approach: Average neighbor information and apply a

neural network.
Initial “layer 0" embeddings are orevious layer

o [
I

kth layer

embedding non-linearity (e.g.,
of v RelLU or tanh)

2], VE>0

Parameter sharing for all the nodes!

average of neighbor’s
previous layer embeddings

17



Graph Neural Networks: Foundations

* Learning node embeddings: A graph filter  adjacency matrix

- Spectral-based

hl(l) — fﬁlter (A, H(l—l)) fﬁlter('a ) _J - Spatial-based

- Attention-based

Updated node embeddings Input node embeddings — - Recurrent-based

* Learning graph-level embeddings:

Flat Graph Pooling
/ ’ (i.e. Max, Ave, Min)
A ’ H - ]Cpool (A, H fl\)OOl(.> ) n
T - Hierarchical Graph
| Pooling (i.e. Diffpool)
A small graph w/ Input node embeddings
fewer nodes | Input graph

New node embeddings 18



Graph Neural Networks: Popular Models

e Spectral-based Graph Filters
= GCN (Kipf & Welling, ICLR 2017), Chebyshev-GNN (Defferrard et al. NIPS 2016)

 Spatial-based Graph Filters
" MPNN (Gilmer et al. IcML 2017), GraphSage (Hamilton et al. NIPS 2017)
® GIN (Xu et al. ICLR 2019)

e Attention-based Graph Filters
m GAT (Velickovic et al. ICLR 2018)

* Recurrent-based Graph Filters
" GGNN (Lietal. ICLR 2016)

19



GNN Model: Quick Summary

Key idea: generate node embeddings by aggregating
neighborhood information.

= Allows for parameter sharing in the encoder

= Allows for inductive learning

20



GSL
Foundations
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Catch e

Why Graph Structure Learning?
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Learning the graphical structure of electronic
health records (Choi et al., AAAI 2020)
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Inferring functional connectivity between
., IEEE

different brain regions (Dong et al
Signal Processing Magazine 2019)



Unsupervised GSL from Smooth Signals

Signals residing on graphs, graph G1 has the best smoothness property.

Dong et al. “Learning Laplacian Matrix in Smooth Graph Signal Representations”. arXiv 2014.

23



Unsupervised GSL from Smooth Signals: Fitness

Node feature reconstruction using

neighboring node features

~

2.

1

X — > A X
j

where ZAM =1, A;,; >0

J

OR

Weighted sum of the squared distance from each
node to the weighted average of its neighbors

~

> DX =~ A X117 = |ILX][%

() J

where D; ; = ZAW

Wang et al. “Label propagation through linear neighborhoods”. IEEE Transactions on Knowledge and Data Engineering 2007.

Daitch et al. “Fitting a graph

to vector data”. ICML 2009.



Unsupervised GSL from Smooth Signals: Smoothness

1
Q(A,X) = =) ALK — X |JP|= tr(XTLX)

i,7 ‘\

Forcing neighboring vertices to have similar features

Belkin et al. “Laplacian eigenmaps and spectral techniques for embedding and clustering”. NIPS 2002.

25



Unsupervised GSL from Smooth Signals: Connectivity

and Sparsity

—ad "log(AT)

Bl|A|l%

e

Connectivity

Kalofolias et al. “How to learn a graph from smooth signals”. AISTATS 2016.

N

Sparsity

26



Supervised GSL for Interacting Systems [Li et al., NeurlPS 2020]
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Li et al. “Evolvegraph: Multi-agent trajectory prediction with dynamic relational reasoning”. NeurlPS 2020.
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Supervised GSL for Interacting Systems [Li et al., NeurlPS 2020]

G deys awi)

=
3

o

2
o
°

o
[

Ground Truth Prediction Ground Truth Prediction
Visualization of latent interaction graph evolution and particle trajectories.
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GSLAGNN
Foundations
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Why GSL for GNNs?

* GNNs are powerful, unfortunately, it
requires graph-structured data available.

* Questionable if the given intrinsic graph-

structures are optimal (i.e., noisy,
incomplete, etc.) for downstream tasks.

 Many applications (e.g., NLP tasks) may
only have non-graph structured data or
even just the original feature matrix,
requiring additional graph construction.




GSLAGNN Formulation

Input: a set of n nodes associated with a feature matrix X e R**" and an
(optional and potentially noisy) initial adjacency matrix A(® ¢ R?x",

Output: an optimized adjacency matrix A*) € R"*" and node embedding
matrix Z* ¢ RY > with respect to downstream task (i.e., task-dependent loss).

(X,A0} (Z*, AM)}

’Q o Y
@ GSL =




GSLAGNN Roadmap

Learning Discrete Graph

Variational Inference ]

Bilevel Optimization ]

Structures
Reinforcement Learning ]
Node Embedding Based
. i Similarity Metric Learning
Graph Similarity Metric
Learning Techniques .
Structure-aware Similarity
Graph Structure Learning for Metric Learning
Graph Neural Networks
KNN-style Sparsification ]
Graph Sparsification
Techniques Epsilon-neighborhood
Sparsification
Smoothness
éeaming Weighted Graph Graph Regularization Comnectivity
tructures Techniques

-

Sparsity

Combining Intrinsic Graph Structures
and Implicit Graph Structures

\

Joint Learning of Graph
Structures and Representations

Adaptive Learning of Graph

Learning Paradigms .
¢ & dig Structures and Representations

Iterative Learning of Graph
Structures and Representations

. J




Learning Discrete Graph
Structures for GNNs

33



Learning Discrete Graph Structures for GNNs

e Sampling a discrete graph structure from learned probabilistic
adjacency matrix.

e Joint graph structure and GNN parameters optimization (non-

differentiable, intractable to solve exactly) via

= \ariational inference
= Bilevel optimization
= Reinforcement Learning

* Non-trivial to extend to inductive learning setting.

34



Bilevel Optimization for GSL [Franceschi et al., ICML 2019]

Initialize Sample graphs Compute gradients of and Compute hypergradients
Data points parameters update GCN parameters and update 0 of graph generator
Ar~Py Validation
O O o Graph e > W= OD(W,A ) =w, - YVL (WA ) > ve E[F(We,r > 9)] nodes
O O generator: o

© o W Wil fe— W
® ATNPG t t+t-1 € . «—Q
GCN: w ﬁﬁ * Wt+r WH'T 17 ’YVLH'T I(Wt+t 1s ’E) \O/

min EANBer(Q) [F(WQ,A)] - Outer objecti.ve.for_graph
0EH N structure optimization

Inner objective for GNN

such that wy =|argming, Ea gerg)|L(W, A)|| «— for BN
parameters optimization

Franceschi et al. “Learning Discrete Structures for Graph Neural Networks”. ICML 2019.
35



Bilevel Optimization for GSL [Franceschi et al., ICML 2019]

Wine Cancer Digits Citeseer Cora 20news FMA
LogReg 92.1(1.3) 933(0.5) 855(1.5 622(0.00 60.8(0.00 42.7(1.7) 37.3(0.7)
Linear SVM 939(1.6) 90645 87.1(1.8) 583(0.0)0 589(0.00 403(1.4) 357(@.5
RBF SVM 94129 91.73.1) 869(3.2) 60.2(0.00 59.70.00 41.0(1.1) 38.3(1.0)
RF 93.7(1.6) 921(1.7) 83.1(2.6) 60.7(0.7) 58.7(0.4) 40.0(1.1) 37.9(0.6)
FFNN 89.7(1.9) 9291.2) 36.3(10.3) 56.7(1.7) 56.1(1.6) 38.6(1.4) 33.2(1.3)
LP 89.8(3.7) 76.6(0.5 91.9@3.1) 232(.7) 37.8(0.2) 353(0.9 14.12.1)
ManiReg 90.5(0.1) 81.8(0.1) 83.9(0.1) 67.7(1.6) 623(0.9) 46.6(1.5) 34.2(1.1)
SemiEmb 91.9(0.1) 89.7(0.1) 909 0.1) 68.1(0.1) 63.1(0.1) 469 0.1) 34.1(1.9
Sparse-GCN 63.5(6.6) 72.5(2.9) 134 (1.5) 33.1(0.9 30.62.1) 247(1.2) 234(1.4)
Dense-GCN 90.6 2.8) 90.5(12.7) 35.6(21.8) 58.4(1.1) 59.1(0.6) 40.1(1.5) 34.5(0.9
RBF-GCN 90.6 (2.3) 92.6(2.2) 70.8(5.5) 58.1(1.2) 57.1(1.9 393(1.4) 33.7(1.4
kENN-GCN 932@3.1) 93814 913(0.5) 683(1.3) 665(0.4) 413(0.6) 37.8(0.9
KNN-LDS (dense) 97.5(1.2) 9490.5) 921(0.7) 709@1.3) 7091.1) 45.6(2.2) 38.6(0.6)
ENN-LDS 97.3(04) 94419 925@0.7) 71.5(1.1) 715(0.8) 464(1.6) 39.7(14

Test accuracy (in percentage) on various node classification datasets.

Accuracy

(00)
(9]
1

(0]
o
1

~
(9
]

70 -

LDS (t=5)
—+— GCN-RND

65 -

25 50 75 100
Retained edges (%)

Val/test accuracy (in percent) for the edge
deletion scenarios on Cora.
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Reinforcement Learning for GSL [Kazi et al., arXiv 2020]

_________________________________________________________________________

,' > ¥
: n n; : X
: J pij€0,1] » :
—> - Pij  _gin —> | sampler .. !
! H )-.....,, ........ '.‘ ........ R n'& T, " | : ~
...... 8) fo Xe Tt s : ey —> EP
: T e ..."’. .. -~ ! ’
: “‘:. ............... é P :
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' T X RS !
graph feature Probabilistic Graph Graph sampling )
learning Generator /!
Graph generator: RL reward: Classes l
graph, - Z Z 5 yza yz H H p’E])
L _tHX_Xll te" =1 j:(4,5)€6®
pij=e¢e " 7
Kazi et al. “Differentiable Graph Module (DGM) for Graph Convolutional Networks”. arXiv 2020. 604 (yi7 gz) — aClq — 1if Yi = gz
accy, otherwise 37




Reinforcement Learning for GSL [Kazi et al., arXiv 2020]

Point cloud segmentation results on ShapeNet dataset.

PREDICTIONS

GROUND TRUTH
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Learning Weighted Graph
Structures for GNNs
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Learning Weighted Graph Structures for GNNs

* Learning a weighted adjacency matrix to represent graph structure.

* Joint graph structure and GNN parameters optimization
(differentiable, more tractable) via SGD techniques.

* Weighted adjacency matrix captures richer information.
* Handling both transductive and inductive learning settings.

40



Weighted GSLAGNN Overview

" {X,S} (X, A}
0 - N
X, A7} Graph similarity

. Q metric learning

C - — Graph GNN y
Q ‘ Q O sparsification
Data points (and © O Fully-connected Learned graph

optional initial edges) * ° weighted graph

Combining intrinsic and implicit graph structures

41



Weighted GSLAGNN Outline

Weighted GSLAGNN

Graph Similarity Metric Learning Techniques

Graph Sparsification Techniques
Graph Regularization Techniques

Combining Intrinsic Graph Structures and
Implicit Graph Structures

Learning Paradigms

42



Graph Similarity Metric Learning Techniques

e Graph structure learning as similarity metric learning (in the node
embedding space)

* Enabling inductive learning

e \Various metric functions

43



Node Embedding Based Similarity Metric Learning

* Learning a weighted adjacency matrix by computing the pair-wise
node similarity in the embedding space
e Common metrics functions
* Attention-based similarity metric functions

* Cosine-based similarity metric functions
* Kernel-based similarity metric functions

Learning pair-wise

‘ Q node similarity
® A © OO
| @ O
Data points \ | Fully-connected

weighted graph "



Attention-based Similarity Metric Functions

Variant 1)

= (v)oW)”

SZ,] VJ
Pl \
Node feature vector Non-negative learnable O o
weight vector O
—_—
e,
Enforcmg sparsity

Variant 2) Data points

Fully-connected
SZ = — RelLU @Vz ‘ W V] weighted graph
Learnable weight matrix

Chen at al. “GraphFlow: Exploiting Conversation Flow with Graph Neural Networks for Conversational Machine Comprehension”. I/CAl 2020.

Chen et al. “Reinforcement Learning Based Graph-to-Sequence Model for Natural Question Generation”. ICLR 2020. 45



Cosine-based Similarity Metric Functions

ST :cos@vi,w O V)

Learnable weight vector
—_—

e @V]

1,7 7 17|+ Multi-head similarity scores Data points

Fully-connected
weighted graph

Chen et al. “Iterative Deep Graph Learning for Graph Neural Networks: Better and Robust Node Embeddings”. NeurlPS 2020.
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Kernel-based Similarity Metric Functions

Mahalanobis distance between
node embeddings

~

iy -] ®.° @
il Q ~v =
S(Vi, Vj) = d(V@; VJ) “ Gaussian kernel OV

20 Data points

Fully-connected
weighted graph

Li et al. “Adaptive graph convolutional neural networks”. AAAI 2018.
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Structure-aware Similarity Metric Learning

* Learning a weighted adjacency matrix by computing the pair-wise
node similarity in the embedding space

* Considering existing edge information of the intrinsic graph in
addition to the node information

Learning pair-wise

”’Q node similarity

600_’ @00 —
® O

Initial graph

Fully-connected
weighted graph
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Structure-aware Attention Mechanism

Variant 1)

?—Q
Sf;,j = softmax(u’ tanh(W1h!, hé-, Vi, Vj,)) @O O —_—
/ Initial graph

Variant 2) Edge embeddings FuI‘Iy-l::or;lnectecrzl1
darian \ weighted grap

ReLU(W@®v;)T(ReLUW®v;) + ReLU(W@))
S@j = \/& \

Liu et al. “Contextualized Non-local Neural Networks for Sequence Learning”. AAAI 20189.

Liu et al. “Retrieval-Augmented Generation for Code Summarization via Hybrid GNN”. ICLR 2021. 49



Graph Sparsification Techniques

 Similarity metric functions learn a fully-connected graph

* Fully-connected graph is computationally expensive and might
introduce noise

* Enforcing sparsity to the learned graph structure
* Various techniques

KNN-style

Graph Sparsification Sparsification

Techniques

Epsilon-neighborhood Sparsification

50



Common Graph Sparsification Options
Option 1) KNN-style Sparsification

Ai,; — tOpk(Si7;)
Option 2) epsilon-neighborhood Sparsification

Az‘,j _ { Si’j Sz‘,j > £

0 otherwise Fully-connected

Sparsified graph
weighted graph Parsiiee grap

51



Graph Regularization Techniques

* Enforcing common graph properties to the learned graph structure
* Combining both task prediction loss and graph regularization loss
* Various graph properties

Smoothness

Graph Regularization

tivit
Techniques Connectivity

Sparsity

52



Graph Regularization Techniques

* Smoothness

1 1
A, X) =53 D A lIX = X7 = 5 tr(XTLX)

2,)
* Connectivity

—1
—1 "log(A1)
n

* Sparsity

1
Al

n2

Borrowed from unsupervised GSL
from smooth signals!

53



Combining Intrinsic and Implicit Graph Structures

* Intrinsic graph typically still carries rich and useful information
* Learned implicit graph is potentially a “shift” (e.g., substructures) from
the intrinsic graph structure

=@

Normalized graph LapIaC|an
f(A) can be arbitrary operation, e.g., graph

Laplacian, row-normalization

Li et al. “Adaptive Graph Convolutional Neural Networks”. AAAI 2018.

Chen et al. “Iterative Deep Graph Learning for Graph Neural Networks: Better and Robust Node Embeddings”. NeurlIPS 2020. 54



Learning Paradigms: Joint Learning

Node features & (optional) Downstream task
initial graph structure prediction

Learned graph
structure

Chen at al. “GraphFlow: Exploiting Conversation Flow with Graph Neural Networks for Conversational Machine Comprehension”. I/JCAIl 2020.
Chen et al. “Reinforcement Learning Based Graph-to-Sequence Model for Natural Question Generation”. ICLR 2020.

Liu et al. “Contextualized Non-local Neural Networks for Sequence Learning”. AAAI 20189.

Liu et al. “Retrieval-Augmented Generation for Code Summarization via Hybrid GNN”. ICLR 2021.

55



Learning Paradigms: Adaptive Learning

Node features & (optional) Downstream task
initial graph structure prediction
Learned graph Node Learned graph
structure 1 embeddings 1 structure N

Repeat for fixed num. of stacked GNN layers

Li et al. “Adaptive Graph Convolutional Neural Networks”. AAAI 2018.
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Learning Paradigms: lterative Learning

Node features & (optional) Downstream task
initial graph structure prediction

Learned graph
structure

Node embeddings

Repeat until condition satisfied

Chen et al. “Iterative Deep Graph Learning for Graph Neural Networks: Better and Robust Node Embeddings”. NeurIPS 2020.
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lterative Deep Graph Learning [Chen et al., NeurlPS 2020]

> AY =20 +(1- )\){n f(A<t>) (1

(X, A® 1,01 A4
‘,,'.-’ Similarity Iearnmg {X, A(t) A(t)

(O-- cos(Wi © vy, Wi O vy)
«l o7 e e -’:@
O
Data points | eO®

t-th iteration

Repeated until condition satisfied

GSL as similarity metric learning

— ) f(AM) ]

Graph
regularlzatlon

GNN

Graph regularization to control smoothness, sparsity and connectivity
Iterative method to refine the graph structure and graph embeddings
Better scalability (O(n”2) -> O(n)) using anchor-based approximation technique

Chen et al. “Iterative Deep Graph Learning for Graph Neural Networks: Better and Robust Node Embeddings”. NeurlPS 2020.

L+ L0 +Z£ ~1)
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lterative Deep Graph Learning [Chen et al., NeurlPS 2020]

Model Cora Citeseer  Pubmed ogbn-arxiv Wine Cancer Digits
GCN 81.5 70.3 79.0 71.7 (0.3) — — —
GAT 83.0(0.7) 72.50.7) 79.0(0.3) — — — —
GraphSAGE 774 (1.0) 67.0(1.0) 76.6(0.8) 71.5(0.3) — — —
APPNP — 75.7 (0.3) 79.7 (0.3) — — — —
H-GCN 84.5 (0.5) 72.8(0.5) 79.8(0.4) — — — —
GCN+GDC 83.6(0.2) 73.4(0.3) 78.7(0.4) — — — —
LDS 84.1 (0.4) 75.0(0.4) — — 973(04) 94.4(1.9 92.5(0.7)
GCNinn * — — — — 959(0.9) 94.7(1.2) 89.5(1.3)
GAT NN * — — — — 95.8(3.1) 88.6(2.7) 89.8(0.6)
GraphSAGEynn* — — — — 96.5(1.1) 92.8(1.0) 88.4(1.8)
LDS* 83.9 (0.6) 74.8(0.3) — — 96.9(14) 93.4(2.4) 90.8(2.5)
IDGL 84.5(0.3) 74.1(0.2) — — 97.8(0.6) 95.1(1.0) 93.1(0.5)
IDGL-ANCH 84.4(0.2) 72.0(1.0) 83.0(0.2) 72.0(0.3) 981(1.1) 948(1.4) 93.2(0.9

Node classification results.

85 85

]
o

80

(9]
w

Accuracy

Accuracy
~
w
D
o

-€- GCN

- LDS
70 -8 IDGL 25
10
65— 25 50 75 0 25 50 75
Missing edges (%) Added edges (%)
(a) Edge deletion (b) Edge addition

Edge attack results on Cora. 59



Weighted GSLAGNN Summary

Node Embedding Based Similarity Metric Learning

Graph Similarity Metric
Learning Techniques

Structure-aware Similarity Metric Learning

KNN-style Sparsificati
Graph Sparsification style Sparsification

Techni
echniques Epsilon-neighborhood Sparsification

Smoothness

Weighted GSLAGNN
SO Graph Regularization Techniques Connectivity

Sparsity
Combining Intrinsic Graph Structures and Implicit Graph Structures
Joint Learning of Graph Structures and Representations

Learning Paradigms Adaptive Learning of Graph Structures and Representations

lterative Learning of Graph Structures and Representations
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Connections to Other Problems
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Connections to Other Problems: GSL as Graph
Generation

Connections:
 Learning graphs from data

Differences:

 Graph generation: generating new graphs where both nodes and edges are added
by sampling from the learned graph distribution.

 GSL: learning a graph structure given a set of node attributes.

Liao, Renjie. “Graph Neural Networks: Graph Generation.” In Graph Neural Networks: Foundations, Frontiers, and Applications. 2022 62



Connections to Other Problems: GSL for Graph
Adversarial Defenses

Connections:
* |Improving potentially error-prone (e.g., noisy or
incomplete) input graphs

* Graph adversarial defenses can benefit from GSL [] —aton > |
techniques |
targetnode

node classification via

D Iffe rences: v a graph neural network v
 Graph adversarial defenses: initial graph
. . . . target gets
structure is available, but potentially poisoned by misclassified

adversarial attacks
 GSL: initial graph structure is available or
unavailable

Gu'nnemann, Stephan. “Graph Neural Networks: Adversarial Robustness.” In Graph Neural Networks: Foundations, Frontiers, and Applications. 2022 63



Connections to Other Problems: Transformers

Connections:

 Transformer models aim to learn a self-attention matrix
between every pair of objects adaptively at each layer,
similar to adaptive learning paradigm for weighted GSL

Differences:
* Vanilla Transformers don’t handle graph-structured data
(graph transformers combining transformers and GNNs)

Vaswani et al., “Attention Is All You Need.” NIPS 2017.
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GSLAGNN: Future Directions
and Conclusions
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Future Directions

* Robust GSL
= Noisy initial graph structures and noisy node attributes

e Scalable GSL

* Pair-wise node similarity computation is expensive and intractable for large
graphs
* Potential solutions: LSH/low-rank/random feature/kernel methods

* GSL for Heterogeneous Graphs
* Heterogeneous graphs carry on richer information

* Less explored



Conclusions

 GNNs are powerful machine learning tools for modeling graph-
structured data

* GSL has been extensively studied in traditional machine learning

e GSLAGNN is a trending research area and critical for the success of
GNN applications

* Open challenges in GSLAGNN



Resources

* Chen, Yu, and Lingfei Wu. "Graph Neural Networks: Graph Structure
Learning." Graph Neural Networks: Foundations, Frontiers, and Applications.
Springer, Singapore, 2022. 297-321. (website, video)

e Zhu, Yangiao, et al. "Deep graph structure learning for robust representations: A
survey." arXiv preprint arXiv:2103.03036 (2021).

* Dong, Guimin, et al. “Graph Neural Networks in loT: A Survey.” arXiv 2022.

* Wu, Lingfei, et al. “Deep Learning on Graphs for Natural Language Processing.”
Tutorials at NAACL'21, SIGIR'21, KDD'21, IJCAI'21, AAAI'22 and TheWebConf’22.
(website)



https://graph-neural-networks.github.io/gnnbook_Chapter14.html
https://www.youtube.com/watch?v=EJQnvefwHes&list=PLExMLJgvoXpizhYU-phqbTFiRNNkICJ_L&index=7
https://dlg4nlp.github.io/tutorials.html

Thanks!
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