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What is Question Answering?

Automated question answering (QA) is the process of finding answers
to natural language questions using certain knowledge sources.
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= Natural language interfaces to databases
= Spoken dialog systems

= Beyond search engines
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Challenges of QA

Lexical gap Complex reasoning Conversational QA

= |exical gap between the = Multi-hop reasoning. = Sequential questions.
question and context.

= Diverse constraints. = Most previous methods
= Most previous methods , do not effectively capture
ignore the subtle inter- * Many previous methods conversation history.

relationships between the focus on single-hop QA
question and context. without modeling various

constraints.
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What is Question Generation?

Natural question generation (QG) is the task of generating natural
language questions from certain knowledge sources.
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Question Generation Applications

= Improving the QA task by providing more training data
= Generating practice exercises for educational purposes

* Helping dialog systems
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Challenges of QG

Context modeling Answer utilization Model training

= Modeling long/large
context.

= Modeling structure
information in context.

= Most previous methods
focus on short/small
context and do not utilize
rich structure info of
context.

= Answer info for guiding
the generation of relevant
and meaningful
questions.

= Most previous methods
either do not consider or
fail to effectively utilize
answer info.

= Cross-entropy based
sequence training has
limitations.

= Most previous methods
rely on cross-entropy loss
or simple reinforcement
learning (RL) loss for
training.
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QA & QG as Dual Tasks

= The input and the output of QA
and QG are (almost) reverse.

= QA and QG can help improve
each other.
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GNN: Toward Geometric Deep Learning

= Graph Neural Networks (GNNSs)
generalize (structured) deep
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= Recommendation systems
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GNN for NLP

= Applications = Challenges
= Dialog systems = Only applicable to problems with graph-
= Machine comprehension structured input.
= X-to-text generation (e.g., AMR, SQL, etc.) = Converting non-graph input to graph-

structured input is crucial and non-trivial.

= e

= Machine translation

SQuAD2.0

The Stanford Question Answering Dataset
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= Computational steps within a GNN
= (a) Edge update: passing node information to neighboring edges.
= (b) Node update: for each node, aggregating information from neighboring edges.
= (c) Global update: aggregating all node information.

(a) Edge update (b) Node update (c) Global update

Ref: Battaglia, Peter W., et al. "Relational inductive biases, deep learning, and graph networks." arXiv preprint arXiv:1806.01261 (2018).
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Contributions: QA
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= KBQA (NAACL 2019, ISWC 2019)

= Modeling the two-way flow of interactions between the questions and the KB.
= Multi-hop reasoning in a KB requiring no external resources and very few hand-crafted features.

= Significantly outperforming previous IR-based methods while remaining competitive with
handcrafted SP-based methods on a popular benchmark.

= Conversational machine comprehension (IJCAI 2020, ICML LRG 2019)

= Recurrent Graph Neural Network based flow mechanism for modeling the temporal
dependencies in a sequence of context graphs.

= Achieving superior performance compared to existing state-of-the-art methods on three public
benchmarks.
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Contributions: QA
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Contributions: QG
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= QG from KG (EMNLP 2020 under review)

= Bidirectional GNN encoder to encode the KG subgraph.
= RNN decoder enhanced with node-level copying mechanism.
= Achieving new state-of-the-art scores on two benchmarks.

= QG from text (ICLR 2020, NeurlPS GRL 2019)

= RL-based Graph2Seq model equipped with a hybrid evaluator.
= Deep Alignment Network for incorporating the answer information into the passage.
= Qutperforming existing methods by a significant margin on a standard benchmark.
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Reinforcement Learning Based Graph-
to-Sequence Model for Question
Generation from Text

Yu Chen, Lingfei Wu, and Mohammed J. Zaki. "Reinforcement learning based graph-
to-sequence model for natural question generation." ICLR 2020.
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Problem Formulation

= Input:
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Context modeling Answer utilization Model training

* Previous works: ignoring the
rich structure information
hidden in text.

= Qur solution: applying a
GNN-based encoder to
capture rich structure
information.

= Previous works: Failing to
fully exploit the answer
information.

= Qur solution: proposing a
deep alignment network for
attention-based soft
alignment between passage
and answer.

= Previous works: Solely
relying on cross-entropy loss
or simple RL loss for training.

= Qur solution: designing a
hybrid loss combining both
cross-entropy loss and RL
loss.
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We propose a novel RL-based Graph2Seq model for question generation from text. To the
best of our knowledge, we are the first to introduce the Graph2Seq architecture for QG.

We design a novel deep alignment network to effectively utilize the answer information.
We present a mixed loss function combining both cross-entropy loss and RL loss.

We explore both static and dynamic ways of constructing graphs from text and are the first
to systematically investigate their performance impacts on a GNN encoder.

The proposed model outperforms existing methods by a significant margin on the standard
SQuAD benchmark for QG.
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= Previous methods neglect potential semantic relationships between passages
and answers when utilizing answer information.

= We explicitly model the global interactions among passages and answers in the
embedding space.

= A deep alignment network for incorporating the answer information into
passages with multiple granularity levels.

= We perform attention-based soft-alignment at both the word level and the
contextual level.

Question Answering and Generation from Structured and Unstructured Data © Yu Chen 2020



[ [ d
x?|00000N 2 D Gonotes paseege
Key-value X : : : —> \g
tati f
;eazrseasgen:nlgr;sngwer )’Za ;;; "E*DDHDH:E—»HHHHH
xr [0
Step 3: compute Step 2: compute aligned
final passage answer embeddings

TR SR - Align(XP, X9, XP, X) = CAT(XP; HP) = CAT(X?; X287
Step': compute — 3 ot exp (ReLU(WXP)TReLU(WX“)>

passage-answer
attention matrix

Question Answering and Generation from Structured and Unstructured Data © Yu Chen 2020



= On the passage side

= We perform deep answer alignment between passage and answer based on
their word embeddings to obtain the passage embeddings H?.

= ABILSTM is applied to H? to obtain contextualized passage embeddings.

= On the answer side

= ABILSTM is applied to the answer word embedding sequence to obtain the
contextualized answer embeddings.
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= On the passage side

= We perform deep answer alignment between passage and answer based on
their contextualized embeddings.

= ABILSTM is applied to the above obtained passage embeddings to compute
the final passage embeddings X.
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= Syntax-based static graph construction
= Adirected and unweighted passage graph based on dependency parsing.

= Semantics-aware dynamic graph construction

= Adirected and weighted graph modeling semantic relationships among
passage words.

Attention matrix —> A = ReLU(Uﬁp)T ReLU(Uﬁp)
Sparse attention—»A — kNN(A) Passage word as node!

matrix

Normalized —>A_|, A'_ — SOftmaX({A7 AT})

attention matrix ~ _
HP is the passage representation
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Node aggregation for the syntax-based static graph
Node embeddings are

hN% = MEAN({hﬁ_l} U {hg—l’ Yu € N—|(v)}) initialized to the passage
’ - oy embeddings X returned by
hLN,_(U = MEAN({h;" "} U {h; ", Vu e Ni_(,)}) Deep Alignment Network.
Node aggregation for the semantics-based static graph e
New) N4
hég\fa(w - Z Ay uhﬁ E hl?ﬁ\fk(v) - Z a;uhﬁ_l \O/ ;/K:O
VUEN_|(v) VUENF(U)
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Fuse the aggregated node embeddings from both directions at each GNN hop

k _ k k Fusion
by, Fuse(hj\u(v) ’ hNHv)) I I — H
hY i

Fuse(a,b) =z0Ga+(1—-2)©Ob SO
z =0(W,[a;b;ja®b;a—Db]+b,)
Node Embeddings
Update the node embeddings using fused information NEY
hqkj _ GRU(hqkj_l, hl;\r(v)) Linia':/ll;;opjsg:ionﬂ
where GRU is a Gated Recurrent Unit (Cho et al., 2014). I

Graph Embedding
After n hops of GNN computation, we obtain the final node/graph embeddings.

Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014).
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= We adopt a state-of-the-art attention-based LSTM decoder with copy and
coverage mechanisms (See et al., 2017).

= |nitial hidden states are based on graph embeddings.

= Node embeddings can be accessed via attention mechanism as a memory bank.

See, Abigail, Peter J. Liu, and Christopher D. Manning. "Get to the point: Summarization with pointer-generator networks." arXiv preprint arXiv:1704.04368 (2017).

Question Answering and Generation from Structured and Unstructured Data © Yu Chen 2020



= Cross-entropy based training has limitations, e.g., exposure bias.

= A mixed loss combining both cross-entropy loss and RL loss
= Ensure the generation of syntactically and semantically valid text

Lim = Y —log P(yF|X,y%,) + Acovioss, £, = (r(V) — r(v*)) Y log P(y; | X, y2,)
t

t \
L=n~Los+ (1=~ greedy — multinomial  self-critical sequence
VErt + (1 =) Lim search  sampling training (SCST) RL
algorithm.

= Two-stage training strategy:
= Train the model with cross-entropy loss
= Finetune the model by optimizing the mixed objective function
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In meteorology, precipitation is any product
. of the condensation of atmospheric water vapor
" SQUAD that falls under gravity. The main forms of pre-

= Popular benchmark for the task of Machine Reading cipitation include drizzle, rain, slect, snow, grau-
pel and hail... Precipitation forms as smaller

Comprehensmn. droplets coalesce via collision with other rain
drops or ice crystals within a cloud. Short, in-
tense periods of rain in scattered locations are

= Our QG benChmarkS called “showers”.
= SQUAD Spllt 1: 75,500/1 7,934/11 ,805 Wha:c causes precipitation to fall?
(train/development/test) examples gravity
What is another main form of precipitation be-

" SQUAD Sp“t 2: 86’635/8’965/87964 examples sides drizzle, rain, snow, sleet and hail?

graupel

Where do water droplets collide with ice crystals
to form precipitation?
within a cloud

Sample question-answer pairs from SQUAD 1.0. Ref:
https://arxiv.org/abs/1606.05250.
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https://arxiv.org/abs/1606.05250

Experimental Setup: Evaluation Metrics

= Automatic evaluation
= BLEU-4
= METEOR
= ROUGE-L
= Q-BLEU1

= Human evaluation
= Syntactically correct
= Semantically correct
= Relevant
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Split-1 Split-2

Methods BLEU-4 METEOR ROUGE-L Q-BLEUI | BLEU-4 METEOR ROUGE-L Q-BLEUI
Transformer 2.56 8.98 26.01 16.70 3.09 9.68 28.86 20.10
SeqCopyNet — — — — 13.02 — 44.00 —
NQG++ - - - - 1329 - - -
MPQG+R* 14.39 18.99 42.46 52.00 14.71 18.93 42.60 50.30
AFPQA - - - - 1564 - - -
s2sa-at-mp-gsa 15.32  19.29 43.91 - 15.82 19.67 44.24 -
ASs2s 16.20 19.92 43.96 - 16.17 - - -
CGC-QG - - - - 17.55 21.24 44.53 -
G2S4yn+BERT+RL | 17.55 21.42 45.59 55.40 18.06 21.53 45.91 55.00
G2S::+BERT+RL | 17.94 21.76 46.02 55.60 18.30 21.70 45.98 55.20

Table 1: Automatic evaluation results on the SQUAD test set. (higher scores indicate better results).
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Methods Syntactically correct Semantically correct Relevant

MPQG+R* 4.34 (0.15) 4.01 (0.23) 3.21(0.31)
G2S,:,+BERT+RL 4.41 (0.09) 4.31 (0.12) 3.79 (0.45)
Ground-truth 4.74 (0.14) 4.74 (0.19) 4.25 (0.38)

Table 2: Human evaluation results (x standard deviation) on the SQUAD split-2 test set. (higher scores
indicate better results).

Question Answering and Generation from Structured and Unstructured Data © Yu Chen 2020




Experimental Results: Ablation Study

Methods BLEU-4 Methods BLEU-4
G2S,,,+BERT+RL 18.06 G2S 4, W/o feat 16.51
G2Ss:+BERT+RL 18.30 G2S4:q W/o feat 16.65
G2Ss1o+BERT-fixed+RL 18.20 G2S 4yn w/o DAN 12.58
G2S4yn+BERT 17.56 G2S4i0 W/o DAN 12.62
G2S4to+BERT 18.02 G2S4tq W/ DAN-word only 15.92
G2S,;,+BERT-fixed 17.86 G2S,;, W/ DAN-contextual only 16.07
G2S4,n+RL 17.18 G2S,:, w/ GGNN-forward 16.53
G2S,;,+RL 17.49 G2S,;, w/ GGNN-backward 16.75
G2S4yn 16.81 G2S,:. w/o BIGGNN, w/ Seq2Seq 16.14
G2Ssta 16.96 G2Ssta w/o BIGGNN, w/ GCN 14.47

Table 3: Ablation study on the SQUAD split-2 test set.
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Passage: for the successful execution of a project , effective planning is essential .

Gold: what is essential for the successful execution of a project ?

G2S;;, w/o BiGGNN (Seq2Seq): what type of planning is essential for the project ?

G2S;;, w/o DAN.: what type of planning is essential for the successful execution of a project ?
G2S,;,: what is essential for the successful execution of a project ?

G2S;:,+BERT: what is essential for the successful execution of a project ?
G2S;;,+BERT+RL: what is essential for the successful execution of a project ?
G2S,,,+BERT+RL: what is essential for the successful execution of a project ?

Passage: the church operates three hundred sixty schools and institutions overseas .
Gold: how many schools and institutions does the church operate overseas ?
G2S;;, w/o BiGGNN (Seq2Seq): how many schools does the church have ?
G2S;;, w/o DAN.: how many schools does the church have ?

G2S;;,: how many schools and institutions does the church have ?
G2S;;,+BERT: how many schools and institutions does the church have ?
G2S,;;,+BERT+RL: how many schools and institutions does the church operate ?
G2S4,,+BERT+RL: how many schools does the church operate ?

Table 4: Generated questions on SQUAD split-2 test set. Target answers are underlined.
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Graph2Seq for QG from KG: Overall Architecture
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Method WQ PQ

BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L
L2A 6.01 25.24 26.95 17.00 19.72 50.38
Transformer 8.94 13.79 32.63 56.43 43.45 73.64
MHQG+AE 11.57 29.69 35.53 25.99 33.16 58.94
G2S+AE 29.45 30.96 55.45 61.48 44.57 77.72
G2Sc4ge +AE 29.40 31.12 55.23 59.59 44.70 75.20

Table 5: Evaluation results on WQ and PQ. (higher scores indicate better results).
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QG-driven Data Augmentation for QA
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Outline

Background on QA & QG

Background on GNNs

Dissertation Contributions

Part |I: QG from Text

Part II: QG from KG

Conclusion & Future Directions
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= KBQA = QG from KG

= Bidirectional GNN encoder to

= A bidirectional attentive memory encode the KG subgraph.

network framework for modeling the

two-way flow of interactions between * RNN decoder enhanced with node-
the questions and the KB. level copying mechanism.
= Conversational MRC = QG from Text
= A Recurrent Graph Neural Network * A RL-based Graph2Seq model with a
based flow mechanism for modeling the hybrid evaluator.

temporal dependencies in a sequence

of context graphs. = Deep Alignment Network for

incorporating the answer information
into the passage.
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Personalized QG

= Complex QA

= program induction

Conversational QG

= graph reasoning

QG from multimodal data

= Conversational QA

Joint learning of QA & QG

= QA from multimodal data

Question Answering and Generation from Structured and Unstructured Data © Yu Chen 2020



© Yu Chen 2020




Question Answering and Generation from Structured and Unstructured Data © Yu Chen 2020




why not change the world?®



