
Graph Neural Networks for Natural
Language Processing:

A Survey

Suggested Citation: Lingfei Wu4, Yu Chen1, Kai Shen5, Xiaojie Guo, Hanning Gao,
Shucheng Li6, Jian Pei and Bo Long (2018), “Graph Neural Networks for Natural
Language Processing:
A Survey”, : Vol. xx, No. xx, pp 1–18. DOI: 10.1561/XXXXXXXXX.

Lingfei Wu
JD.COM Silicon Valley Research Center, USA

lwu@email.wm.edu

Yu Chen
Rensselaer Polytechnic Institute, USA

hugochan2013@gmail.com

Kai Shen
Zhejiang University, China

shenkai@zju.edu.cn

Xiaojie Guo
JD.COM Silicon Valley Research Center, USA

xguo7@gmu.edu

Hanning Gao
Central China Normal University, China

ghnqwerty@gmail.com

Shucheng Li
Nanjing University, China

shuchengli@smail.nju.edu.cn

Jian Pei
Simon Fraser University, Canada

jpei@cs.sfu.ca

Bo Long
JD.COM, China
bo.long@jd.com

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading (by
robots or other automatic processes) is prohibited without explicit
Publisher approval. Boston — Delft

Contents

0.1 Introduction . 2
0.2 Graph Based Algorithms for NLP 5
0.3 Graph Neural Networks 10
0.4 Graph Construction Methods for NLP 19
0.5 Graph Representation Learning for NLP 39
0.6 GNN Based Encoder-Decoder Models 61
0.7 Applications . 78
0.8 General Challenges and Future Directions 126
0.9 Conclusions . 132

References 133

Graph Neural Networks for Natural
Language Processing:
A Survey
Lingfei Wu*1, Yu Chen*2, Kai Shen**3, Xiaojie Guo4, Hanning Gao5,
Shucheng Li†6, Jian Pei7 and Bo Long8

1JD.COM Silicon Valley Research Center, USA; lwu@email.wm.edu
2Rensselaer Polytechnic Institute, USA; hugochan2013@gmail.com
3Zhejiang University, China; shenkai@zju.edu.cn
4JD.COM Silicon Valley Research Center, USA; xguo7@gmu.edu
5Central China Normal University, China; ghnqwerty@gmail.com
6Nanjing University, China; shuchengli@smail.nju.edu.cn
7Simon Fraser University, Canada; jpei@cs.sfu.ca
8JD.COM, China; bo.long@jd.com

ABSTRACT

Deep learning has become the dominant approach in addressing
various tasks in Natural Language Processing (NLP). Although
text inputs are typically represented as a sequence of tokens, there
is a rich variety of NLP problems that can be best expressed
with a graph structure. As a result, there is a surge of interest in
developing new deep learning techniques on graphs for a large
number of NLP tasks. In this survey, we present a comprehensive
overview on Graph Neural Networks (GNNs) for Natural Lan-
guage Processing. We propose a new taxonomy of GNNs for NLP,

*Both authors contributed equally to this research.
**This research is done when Kai Shen is an intern at JD.COM.
†Shucheng Li is also with National Key Lab for Novel Software Technology, Nanjing

University.

Lingfei Wu1, Yu Chen1, Kai Shen2, Xiaojie Guo, Hanning Gao, Shucheng Li3, Jian Pei and
Bo Long (2018), “Graph Neural Networks for Natural Language Processing:
A Survey”, : Vol. xx, No. xx, pp 1–18. DOI: 10.1561/XXXXXXXXX.

2

which systematically organizes existing research of GNNs for
NLP along three axes: graph construction, graph representation
learning, and graph based encoder-decoder models. We further
introduce a large number of NLP applications that exploits the
power of GNNs and summarize the corresponding benchmark
datasets, evaluation metrics, and open-source codes. Finally, we
discuss various outstanding challenges for making the full use
of GNNs for NLP as well as future research directions. To the
best of our knowledge, this is the first comprehensive overview
of Graph Neural Networks for Natural Language Processing.

0.1 Introduction

Deep learning has become the dominant approach in coping with various tasks
in Natural Language Processing (NLP) today, especially when operated on
large-scale text corpora. Conventionally, text sequences are considered as a
bag of tokens such as BoW and TF-IDF in NLP tasks. With recent success of
Word Embeddings techniques (Mikolov et al., 2013; Pennington et al., 2014),
sentences are typically represented as a sequence of tokens in NLP tasks.
Hence, popular deep learning techniques such as recurrent neural networks
(Schuster and Paliwal, 1997) and convolutional neural networks (Krizhevsky
et al., 2012) have been widely applied for modeling text sequence.

However, there is a rich variety of NLP problems that can be best expressed
with a graph structure. For instance, the sentence structural information in text
sequence (i.e. syntactic parsing trees like dependency and constituency parsing
trees) can be exploited to augment original sequence data by incorporating the
task-specific knowledge. Similarly, the semantic information in sequence data
(i.e. semantic parsing graphs like Abstract Meaning Representation graphs and
Information Extraction graphs) can be leveraged to enhance original sequence
data as well. Therefore, these graph-structured data can encode complicated
pairwise relationships between entity tokens for learning more informative
representations.

Unfortunately, deep learning techniques that were disruptive for Euclidean
data (e.g, images) or sequence data (e.g, text) are not immediately applicable
to graph-structured data, due to the complexity of graph data such as irregular

0.1. Introduction 3

structure and varying size of node neighbors. As a result, this gap has driven
a tide in research for deep learning on graphs, especially in development of
graph neural networks (GNNs) (Wu et al., 2022; Kipf and Welling, 2016;
Defferrard et al., 2016; Hamilton et al., 2017a).

Figure 1: The taxonomy, which systematically organizes GNNs for NLP along four axes: graph
construction, graph representation learning, encoder-decoder models, and the applications.

This wave of research at the intersection of deep learning on graphs and
NLP has influenced a variety of NLP tasks (Liu and Wu, 2022). There has seen
a surge of interests in applying and developing different GNNs variants and
achieved considerable success in many NLP tasks, ranging from classification
tasks like sentence classification (Henaff et al., 2015; Huang and Carley, 2019),
semantic role labeling (Luo and Zhao, 2020; Gui et al., 2019), and relation
extraction (Qu et al., 2020; Sahu et al., 2019), to generation tasks like machine
translation (Bastings et al., 2017; Beck et al., 2018a), question generation
(Pan et al., 2020; Sachan et al., 2020), and summarization (Fernandes et al.,
2019; Yasunaga et al., 2017). Despite the successes these existing research has
achieved, deep learning on graphs for NLP still encounters many challenges,
namely,

• Automatically transforming original text sequence data into highly
graph-structured data. Such challenge is profound in NLP since most
of the NLP tasks involving using the text sequences as the original
inputs. Automatic graph construction from the text sequence to utilize

4

the underlying structural information is a crucial step in utilizing graph
neural networks for NLP problems.

• Properly determining graph representation learning techniques. It is
critical to come up with specially-designed GNNs to learn the unique
characteristics of different graph-structures data such as undirected,
directed, multi-relational and heterogeneous graphs.

• Effectively modeling complex data. Such challenge is important since
many NLP tasks involve learning the mapping between the graph-based
inputs and other highly structured output data such as sequences, trees,
as well as graph data with multi-types in both nodes and edges.

In this survey, we will present for the first time a comprehensive overview
of Graph Neural Networks for Natural Language Processing. Our survey
is timely for both Machine Learning and NLP communities, which covers
relevant and interesting topics, including automatic graph construction for
NLP, graph representation learning for NLP, various advanced GNNs-based
encoder-decoder models (i.e. graph2seq, graph2tree, and graph2graph) for
NLP, and the applications of GNNs in various NLP tasks. We highlight our
main contributions as follows:

• We propose a new taxonomy of GNNs for NLP, which systematically
organizes existing research of GNNs for NLP along four axes: graph
construction, graph representation learning, and graph based encoder-
decoder models.

• We present the most comprehensive overview of the state-of-the-art
GNNs-based approaches for various NLP tasks. We provide detailed
descriptions and necessary comparisons on various graph construc-
tion approaches based on the domain knowledge and semantic space,
graph representation learning approaches for various categories of graph-
structures data, GNNs-based encoder-decoder models given different
combinations of inputs and output data types.

• We introduce a large number of NLP applications that are exploiting the
power of GNNs, including how they handle these NLP tasks along three
key components (i.e., graph construction, graph representation learn-
ing, and embedding initialization), as well as providing corresponding
benchmark datasets, evaluation metrics, and open-source codes.

0.2. Graph Based Algorithms for NLP 5

• We outline various outstanding challenges for making the full use of
GNNs for NLP and provides discussions and suggestions for fruitful
and unexplored research directions.

The rest of the survey is structured as follows. Section 0.2 reviews the
NLP problems from a graph perspective, and then briefly introduces some
representative traditional graph-based methods for solving NLP problems.
Section 0.3 elaborates basic foundations and methodologies for graph neural
networks, which are a class of modern neural networks that directly operate
on graph-structured data. We also provide a list of notations used throughout
this survey. Section 0.4 focuses on introducing two major graph construction
approaches, namely static graph construction and dynamic graph construc-
tion for constructing graph structured inputs in various NLP tasks. Section
0.5 discusses various graph representation learning techniques that are di-
rectly operated on the constructed graphs for various NLP tasks. Section 0.6
first introduces the typical Seq2Seq models, and then discusses two typical
graph-based encoder-decoder models for NLP tasks (i.e., graph-to-tree and
graph-to-graph models). Section 0.7 discusses 12 typical NLP applications
using GNNs bu providing the summary of all the applications with their
sub-tasks, evaluation metrics and open-source codes. Section 0.8 discusses
various general challenges of GNNs for NLP and pinpoints the future research
directions. Finally, Section 0.9 summarizes the paper. The taxonomy, which
systematically organizes GNN for NLP approaches along four axes: graph
construction, graph representation learning, encoder-decoder models, and the
applications is illustrated in Fig.1.

0.2 Graph Based Algorithms for NLP

In this section, we will first review the NLP problems from a graph perspective,
and then briefly introduce some representative traditional graph-based methods
for solving NLP problems.

0.2.1 Natural Language Processing: A Graph Perspective

The way we represent natural language reflects our particular perspective on
it, and has a fundamental influence on the way we process and understand
it. In general, there are three different ways of representing natural language.

6

The most simplified way is to represent natural language as a bag of tokens.
This view of natural language completely ignores the specific positions of
tokens appearing in text, and only considers how many times a unique token
appears in text. If one randomly shuffles a given text, the meaning of the text
does not change at all from this perspective. The most representative NLP
technique which takes this view is topic modeling (Blei et al., 2003) which
aims to model each input text as a mixture of topics where each topic can be
further modeled as a mixture of words.

A more natural way is to represent natural language as a sequence of
tokens. This is how human beings normally speak and write natural language.
Compared to the above bag perspective, this view of natural language is able
to capture richer information of text, e.g., which two tokens are consecu-
tive and how many times a word pair co-occurs in local context. The most
representative NLP techniques which take this view include the linear-chain
CRF (Lafferty et al., 2001) which implements sequential dependencies in
the predictions, and the word2vec (Mikolov et al., 2013) which learns word
embeddings by predicting the context words of a target word.

The third way is to represent natural language as a graph. Graphs are ubiq-
uitous in NLP. While it is probably most apparent to regard text as sequential
data, in the NLP community, there is a long history of representing text as
various kinds of graphs. Common graph representations of text or world knowl-
edge include dependency graphs, constituency graphs, AMR graphs, IE graphs,
lexical networks, and knowledge graphs. Besides, one can also construct a
text graph containing multiple hierarchies of elements such as document,
passage, sentence and word. In comparison with the above two perspectives,
this view of natural language is able to capture richer relationships among
text elements. As we will introduce in next section, many traditional graph-
based methods (e.g., random walk, label propagation) have been successfully
applied to challenging NLP problems including word-sense disambiguation,
name disambiguation, co-reference resolution, sentiment analysis, and text
clustering.

0.2.2 Graph Based Methods for Natural Language Processing

In this previous subsection, we have discussed that many NLP problems can
be naturally translated into graph-based problems. In this subsection, we will

0.2. Graph Based Algorithms for NLP 7

introduce various classical graph-based algorithms that have been successfully
applied to NLP applications. Specifically, we will first briefly illustrate some
representative graph-based algorithms and their applications in the NLP field.
And then we further discuss their connections to GNNs. For a comprehensive
coverage of traditional graph-based algorithms for NLP, we refer the readers
to (Mihalcea and Radev, 2011).

Random Walk Algorithms

Approach Random walk is a class of graph-based algorithms that produce
random paths in a graph. In order to do a random walk, one can start at any
node in a graph, and repeatedly choose to visit a random neighboring node at
each time based on certain transition probabilities. All the visited nodes in a
random walk then form a random path. After a random walk converges, one
can obtain a stationary distribution over all the nodes in a graph, which can
be used to either select the most salient node in a graph with high structural
importance by ranking the probability scores or measure the relatedness of two
graphs by computing the similarity between two random walk distributions.

Applications Random walk algorithms have been applied in various NLP
applications including measures of semantic similarity of texts (Ramage et al.,
2009) and semantic distance on semantic networks (Hughes and Ramage,
2007), word-sense disambiguation (Mihalcea, 2005; Tarau et al., 2005), name
disambiguation (Minkov et al., 2006), query expansion (Collins-Thompson
and Callan, 2005), keyword extraction (Mihalcea and Tarau, 2004), and cross-
language information retrieval (Monz and Dorr, 2005). For example, given
a semantic network and a word pair, Hughes and Ramage (2007) computed
a word-specific stationary distribution using a random walk algorithm, and
measured the distance between two words as the similarity between the random
walk distributions on this graph, biased on each input word in a given word
pair. To solve a name disambiguation task on email data, Minkov et al. (2006)
built a graph of email-specific items (e.g., sender, receiver and subject) from a
corpus of emails, and proposed a “lazy” topic-sensitive random walk algorithm
which introduces a probability that the random walk would stop at a given
node. Given an email graph and an ambiguous name appearing in an input
email, a random walk is performed biased toward the text of the given email,

8

and the name is resolved to the correct reference by choosing the person node
that has the highest score in the stationary distribution after convergence. To
solve the keyword extraction task, Mihalcea and Tarau (2004) proposed to
perform a random walk on a co-occurrence graph of words, and rank the
importance of the words in the text based on their probability scores in the
stationary distribution.

Graph Clustering Algorithms

Approach Common graph clustering algorithms include spectral clustering,
random walk clustering and min-cut clustering. Spectral clustering algorithms
make use of the spectrum (eigenvalues) of the Laplacian matrix of the graph to
perform dimensionality reduction before conducting clustering using existing
algorithms like K-means. Random walk clustering algorithms operate by
conducting a t-step random walk on the graph, as a result, each node is
represented as a probability vector indicating the t-step generation probabilities
to all of the other nodes in the graph. Any clustering algorithm can be applied
on the generation-link vectors. Note that for graph clustering purposes, a
small value of t is more preferred because we are more interested in capturing
the local structural information instead of the global structural information
(encoded by the stationary distribution after a random walk converges). The
min-cut algorithms can also be used to partition the graph into clusters.

Applications Graph clustering algorithms have been successfully applied
to solve the text clustering task. For instance, Erkan (2006) proposed to use
the n-dim probabilistic distribution derived from a t-step random walk on
a directed generation graph (containing n document nodes) as the vector
representation of each document in a corpus. Then these document representa-
tions can be consumed by a graph clustering algorithm to generate document
clusters. Note that the generation graph is constructed by computing the gen-
eration probability of each ordered document pair in the corpus following the
language-model approach proposed by Ponte and Croft (1998).

Graph Matching Algorithms

Approach Graph matching algorithms aim to compute the similarity be-
tween two graphs. Among them, Graph Edit Distance is the most commonly

0.2. Graph Based Algorithms for NLP 9

used method to measure the dissimilarity of two graphs. It computes the
distance as the number of changes (i.e., add, delete, substitute) needed to trans-
form one graph into the other. Then the dissimilarity score can be converted
into the similarity score.

Applications Graph matching algorithms have applications in the textual
entailment task that aims at deciding whether a given sentence can be inferred
from text. For example, Haghighi et al. (2005) assumed that a hypothesis is
entailed from the text when the cost of matching the hypothesis graph to the
text graph is low, and thus applied a graph matching algorithm to solve the
problem.

Label Propagation Algorithms

Approach Label propagation algorithms (LPAs) is a class of semi-supervised
graph-based algorithms that propagate labels from labeled data points to pre-
viously unlabeled data points. Basically, LPAs operate by propagating and
aggregating labels iteratively across the graph. At each iteration, each node
changes its label based on the labels that its neighboring nodes possess. As a
result, the label information diffuses through the graph.

Applications LPA have been widely used in the network science literature
for discovering community structures in complex networks. In the literature of
NLP, LPA have been successfully applied in word-sense disambiguation (Niu
et al., 2005) and sentiment analysis (Goldberg and Zhu, 2006). These applica-
tions usually focus on the semi-supervised learning setting where labeled data
is scarce, and leverage the LPA algorithm for propagating labels from limited
labeled examples to a large amount of similar unlabeled examples with the
assumption that similar examples should have similar labels.

Limitations and Connections to GNNs

Although traditional graph-based algorithms have been successfully applied in
many NLP tasks, they have several limitations. First of all, they have limited
expressive power. They mostly focus on capturing the structural information
of graphs but do not consider the node and edge features which are also

10

very important for many NLP applications. Secondly, there is not a unified
learning framework for traditional graph-based algorithms. Different graph-
based algorithms have very different properties and settings, and are only
suitable to some specific use cases.

The above limitations of traditional graph-based algorithms call for a
unified graph-based learning framework with strong expressive power on
modeling both the graph structures and node/edge properties. Recently, GNNs
have gained increasing attention as a special class of neural networks which
can model arbitrary graph-structured data. Most GNN variants can be regarded
as a message passing based learning framework. Unlike traditional message
passing based algorithms like LPA which operates by propagating labels
across a graph, GNNs typically operate by transforming, propagating and
aggregating nodes/edge features through several neural layers so as to learn
better graph representations. As a general graph-based learning framework,
GNNs can be applied to various graph-related tasks such as node classification,
link prediction and graph classification.

0.3 Graph Neural Networks

In the previous chapter, we have illustrated various conventional graph-based
methods for different NLP applications. In this chapter, we will elaborate basic
foundations and methodologies for graph neural networks (GNNs) which are
a class of modern neural networks which directly operate on graph-structured
data (Wu et al., 2022). To facilitate the description of the technologies, we
list all the notations used throughout this survey in Table 1, which includes
variables and operations in the domain of both the graph neural networks and
NLP.

Table 1: Notation

Graph Basics

A graph G
Edge set E
Vertex (node) set V

0.3. Graph Neural Networks 11

The number of vertexes (nodes) n

The number of edges m

A single vertex(node) vi ∈ V vi

A single edge ei,j(connecting vertex vi and vertex vj ∈ E ei,j

The neighbours of a vertex (node) vi N(vi)
Adjacent matrix of a graph A

Laplacian matrix L

Diagonal degree matrix D

The initial attributes of vertex vi ∈ V xi

The initial attributes of edge ei,j ∈ E ri,j

The embedding of vertex vi ∈ V hi

The embedding of edge ei,j ∈ E ei,j

NLP Basics

Vocabulary V

Source language s
Target language t
Corpus of words/aligned sentences used for training C
The ith word in corpus C wi

The embedding of word wi wi

The embedding vector’s dimensionality d
The number of words n
The ith document in source(target) language docs

i (doct
i)

Representation of document docs
i (doct

i) ds
i (dt

i)
The ith paragraph in source(target) language paras

i (parat
i)

Representation of paragraph paras
i (parat

i) ps
i (pt

i)
The ith sentence in source(target) language sentsi (sentti)
Representation of sentence sentsi (sentti) ss

i (st
i)

12

0.3.1 Foundations

Graph neural networks are essentially graph representation learning models
and can be applied to node-focused tasks and graph-focused tasks. GNNs learn
embeddings for each node in the graph and aggregate the node embeddings
to produce the graph embeddings. Generally, the learning process of node
embeddings utilizes graph structure and input node embeddings, which can be
summarized as:

h(l)
i = ffilter(A,H(l−1)) (1)

whereA ∈ Rn×n is the adjacency matrix of the graph, H(l−1) = {h(l−1)
1 ,h(l−1)

2 ,

...,h(l−1)
n } ∈ Rn×d denotes the input node embeddings at the l − 1-th GNN

layer, and H(l) is the updated node embeddings. d is the dimension of h(l−1)
i .

We refer to the process depicted in Eq.(1) as graph filtering and ffilter(·, ·) is
named as a graph filter. The specific models then differ only in how ffilter(·, ·)
is chosen and parameterized. Graph filtering does not change the structure of
graph, but refines the node embeddings. Graph filtering layers are stacked to
L layers to generate final node embeddings.

Since graph filtering does not change the graph structure, pooling oper-
ations are introduced to aggregate node embeddings to generate graph-level
embeddings inspired by CNNs. In GNN models, the graph pooling takes a
graph and its node embeddings as inputs and then generates a smaller graph
with fewer nodes and its corresponding new node embeddings. The graph
pooling operation can be summarized as follows:

A′,H′ = fpool(A,H) (2)

where fpool(·, ·) A ∈ Rn×n and A′ ∈ Rn′×n′
are the adjacency matrices

before and after graph pooling. H ∈ Rn×d and H′ ∈ Rn′×d′
are the node

embeddings before and after graph pooling. n′ is set to be 1 in most cases to
get the embedding for the entire graph.

0.3.2 Methodologies

Graph Filtering

There exists a variety of implementations of graph filter f in Eq.(1), which
could be roughly categorized into spectral-based graph filters, spatial-based
graph filters, attention-based graph filters and recurrent-based graph filters.

0.3. Graph Neural Networks 13

Conceptually, the spectral-based graph filters are based on spectral graph
theory while the spatial-based methods compute a node embedding using its
spatially close neighbor nodes on the graph. Some spectral-based graph filters
can be converted to spatial-based graph filters. The attention-based graph
filters are inspired by the self-attention mechanism (Vaswani et al., 2017) to
assign different attention weights to different neighbor nodes. Recurrent-based
graph filters introduce gating mechanism, and the model parameters are shared
across different GNN layers. Next, we will explain these four types of graph
filters in detail by introducing some of their representative GNN models.

Spectral-based Graph Filters Inspired by graph signal processing, Def-
ferrard et al. proposed a spectral graph theoretical formulation of CNNs, which
generalizes CNNs to graphs and provides the same linear computational com-
plexity and constant learning complexity as classical CNNs. A more typical
example of spectral-based graph filters is Graph Convolutional Networks
(GCN) (Kipf and Welling, 2016). Spectral convolution on graphs is defined
as the multiplication of a signal xi ∈ Rn (a scalar for node vi) with the filter
ffilter = diag(θ) parameterized by θ ∈ Rn in the Fourier domain:

ffilter ∗ xi = Uf(Λ)UT xi (3)

where U is the matrix of eigenvectors of the normalized graph Laplacian
L = In −D− 1

2AD− 1
2 . In is the identity matrix, D is the degree matrix and

Λ is the eigenvalues of L.
However, the computation of the full eigen-decomposition is prohibitively

expensive. To solve this problem, Defferrard et al. (2016) uses a truncated
expansion in terms of Chebyshev polynomials Tp(x) up to P th-order to
approximate gθ(Λ). Eq. (3) can be represented as follows:

f ′
filter ∗ xi ≈

P∑
p=0

θ′
pTp(L̃)xi (4)

where L̃ = 2
λmax

L − In. λmax is the largest eigenvalue of L. θ′
k ∈ RP

is a vector of Chebyshev coefficients. The Chebyshev polynomials can be
defined recursively: Tk(xi) = 2xiTk−1(xi) − Tk−2(xi), with T0(xi) = 1
and T1(xi) = xi. Eq.(4) is a Kth-order polynomial in the Laplacian, which
shows that every central node depends only on nodes in the P -hop range.

14

Therefore, a neural network model based on graph convolution can stack
multiple convolutional layers using Eq. (4). By limiting the layer-wise convo-
lution operation to P = 1 and stacking multiple convolutional layers, Kipf and
Welling (2016) proposed a multi-layer Graph Convolutional Network (GCN).
It further approximates λmax ≈ 2 and Eq. (4) is simplified to:

f ′
filter ∗ h(l)

i ≈ θ′
0h(l)

i + θ′
1(L− In)h(l)

i = θ′
0h(l)

i − θ′
1D

− 1
2AD− 1

2 h(l)
i (5)

with two free parameters θ′
0 and θ′

1. To alleviate the problem of overfitting
and minimize the number of operations (such as matrix multiplications), it is
beneficial to constrain the number of parameters by setting a single parameter
θ = θ′

0 = −θ′
1:

ffilter ∗ h(l)
i ≈ θ(In +D− 1

2AD− 1
2)h(l)

i (6)

Repeat application of this operator may cause numerical instability and ex-
plosion/vanishing gradients, Kipf and Welling (2016) proposed to use a
renormalization trick: In + D− 1

2AD− 1
2 → D̃− 1

2 ÃD̃− 1
2 , with Ã = A + In

and D̃ii =
∑

j Ãij . Finally, the definition can be generalized with a signal
H ∈ Rn×d with d input channels (i.e. a d-dimensional feature vector for each
node) and F filters or feature maps as follows:

H(l) = σ(D̃− 1
2 ÃD̃− 1

2 H(l−1)W(l−1)) (7)

Here, W(l−1) is a layer-specific trainable weight matrix and σ(·) denotes an
activation function. H(l) ∈ Rn×d is the activated node embeddings at (l−1)-th
layer.

Spatial-based Graph Filters Analogous to the convolutional operation of
a conventional CNN, spatial-based graph filters operate the graph convolutions
based on a node’s spatial relations. The spatial-based graph filters derive the
updated representation for the target node via convolving its representation
with its neighbors’ representations. On the other hand, spatial-based graph
filters hold the idea of information propagation, namely, message passing.
The spatial-based graph convolutional operation essentially propagates node
information as messages along the edges. Here we introduce two typical GNNs
based on spatial-based graph filters are Message Passing Neural Network
(MPNN) (Gilmer et al., 2017) and GraphSage (Hamilton et al., 2017a).

0.3. Graph Neural Networks 15

MPNN (Gilmer et al., 2017) proposes a general framework of spatial-
based graph filters ffilter which is a composite function consisting of fU

and fM . It treats graph convolutions as a message passing process in which
information can be passed from one node to another along the edges directly.
MPNN runs K-step message passing iterations to let information propagate
further to K-hop neighboring nodes. The message passing function, namely
the spatial-based graph filter, on the target node vi is defined as

h(l)
i = ffilter(A,H(l−1)) = fU (h(l−1)

i ,
∑

vj∈N(vi)
fM (h(l−1)

i ,h(l−1)
j , ei,j)),

(8)
where h(0)

i = xi, fU (·) and fM (·) are the update and message aggregate
functions with learnable parameters, respectively. After deriving the hidden
representations of each node, h(L)

i (L is the number of graph convolution
layers) can be passed to an output layer to perform node-level prediction tasks
or to a readout function to perform graph-level prediction tasks. MPNN is
very general to include many existing GNNs by applying different functions
of fU (·) and fM (·).

Considering that the number of neighbors of a node can vary from one
to a thousand or even more, it is inefficient to take the full size of a node’s
neighborhood in a giant graph with thousands of millions of nodes. Graph-
Sage (Hamilton et al., 2017a) adopts sampling to obtain a fixed number of
neighbors for each node as

ffilter(A,H(l−1)) = σ(W(l) · fM (h(l−1)
i , {h(l−1)

j , ∀vj ∈ N(vi)})), (9)

where N(vi) is a random sample of the neighboring nodes of node vi. The
aggregation function can be any functions that are invariant to the permutations
of node orderings such as mean, sum or max operations.

Attention-based Graph Filters The original versions of GNNs take edge
connections of the input graph as fixed, and do not dynamically adjust the
connectivity information during the graph learning process. Motivated by the
above observation, and inspired by the successful applications of multi-head
attention mechanism in the Transformer model (Vaswani et al., 2017; Velick-
ovic et al., 2018) proposed the Graph Attention Network (GAT) by introducing
the multi-head attention mechanism to the GNN architecture which is able

16

to dynamically learn the weights (i.e., attention scores) on the edges when
performing message passing. More specifically, when aggregating embeddings
from neighboring nodes for each target node in the graph, the semantic simi-
larity between the target node and each neighboring node will be considered
by the multi-head attention mechanism, and important neighboring nodes
will be assigned higher attention scores when performing the neighborhood
aggregation. For the l-th layer, GAT thus uses the following formulation of
the attention mechanism,

αij =
exp(LeakyReLU(u(l)T [W(l)h(l−1)

i ||W(l)h(l−1)
j]))∑

vk∈N(vi) exp(LeakyReLU(u(l)T [W(l)h(l−1)
i ||W(l)h(l−1)

k]))
(10)

where u(l) and W(l) are the weight vector and weight matrix at l-th layer,
respectively, and || is the vector concatenation operation. Note that N(vi) is
the 1-hop neighborhood of vi including itself. After obtaining the attention
scores αij for each pair of nodes vi and vj , the updated node embeddings can
be computed as a linear combination of the input node features followed by
some nonlinearity σ, formulated as,

h(l)
i = ffilter(A,H(l−1)) = σ(

∑
vj∈N(vi)

αijW(l)h(l−1)
j) (11)

In order to stabilize the learning process of the above self-attention, in-
spired by Vaswani et al. (2017), multiple independent self-attention mecha-
nisms are employed and their outputs are concatenated to produce the follow-
ing node embedding:

ffilter(A,H(l−1)) = ||Kk=1σ(
∑

vj∈N(vi)
αk

ijW(l)
k h(l−1)

j), (12)

while the final GAT layer (i.e., the L-th layer for a GNNs with L layers)
employs averaging instead of concatenation to combine multi-head attention
outputs.

ffilter(A,H(L−1)) = σ(1
K

K∑
k=1

∑
vj∈N(vi)

αk
ijW(L)

k h(L−1)
j) (13)

Recurrent-based Graph Filters A typical example of recurrent-based
graph filters is the Gated Graph Neural Networks (GGNN)-filter. The biggest

0.3. Graph Neural Networks 17

modification from typical GNNs to GGNNs is the use of Gated Recurrent
Units (GRU) (Cho et al., 2014). Analogous to RNN, GGNN unfolds the
recurrence in a fixed T time steps and uses back propagation through time to
calculate the gradients. The GGNN-filter also takes the edge type and edge
direction into consideration. To this end, ei,j denotes the directed edge from
node vi to node vj and the edge type of ei,j is ti,j . The propagation process of
recurrent-based filter ffilter in GGNN can be summarized as follows:

h(0)
i = [xT

i ,0]T (14)

a(l)
i = AT

i: [h
(l−1)
1 ...h(l−1)

n]T (15)

h(l)
i = GRU(a(l)

i ,h(l−1)
i) (16)

where A ∈ Rdn×2dn is a matrix determining how nodes in the graph commu-
nicating with each other. n is the number of nodes in the graph. Ai: ∈ Rd×2d

are the two columns of blocks in A corresponding to node vi. In Eq. (14), the
initial node feature xi are padded with extra zeros to make the input size equal
to the hidden size. Eq. (15) computes a(l)

i ∈ R2d by aggregating information
from different nodes via incoming and outgoing edges with parameters de-
pendent on the edge type and direction. The following step uses a GRU unit
to update the hidden state of node v by incorporating a(l)

i and the previous
timestep hidden state h(l−1)

i .

Graph Pooling

Graph pooling layers are proposed to generate graph-level representations for
graph-focused downstream tasks, such as graph classification and prediction
based on the node embedding learned from the graph filtering. This is because
the learned node embeddings are sufficient for node-focused tasks, however,
for graph-focused tasks, a representation of the entire graph is required. To
this end, we need to summarize the node embeddings information and the
graph structure information. The graph pooling layers can be classified into
two categories: flat graph pooling and hierarchical graph pooling. The flat
graph pooling generates the graph-level representation directly from the node
embeddings in a single step. In contrast, the hierarchical graph pooling con-
tains several graph pooling layers and each of the pooling layer follows a stack
of graph filters. In this section, we briefly introduce several representative flat
pooling layers and hierarchical pooling layers.

18

Flat Graph Pooling Ideally, an aggregator function would be invariant to
permutations of its input while maintaining a large expressive capacity. The
graph pooling operation fpool is commonly implemented as Max-pooling and
Average-pooling. Another popular choices are the variants of the Max-pooling
and Average pooling operations by following a fully-connected layer (FC)
transformation. The resulting max pooling and FCmax can be expressed as:

ri = max(H:,i) or ri = max(WH:,i) (17)

where i denotes the i-th channel of the node embedding and H:,i ∈ Rn×1

is a vector. W is a matrix that denotes to the trainable parameters of the
FCmax pooling layer. ri is a scalar and the final graph embedding R =
[r1, r2, ..., rn]T . Finally, a powerful but less common pooling operation is the
BiLSTM aggregation function which is not permutation invariant on the set
of node embeddings. However, it has been often demonstrated to have better
expressive power than other flat pooling operations (Hamilton et al., 2017a;
Zhang et al., 2019c).

Hierarchical Graph Pooling Hierarchical graph pooling coarsens the
graph step by step to learn the graph-level embeddings. Hierarchical pooling
layers can be divided into two categories according to the ways to coarsen
the graph. One type of hierarchical pooling layer coarsens the graph by sub-
sampling the most important nodes as the nodes of the coarsened graph (Gao
et al., 2019). Another type of hierarchical pooling layer combines nodes in
the input graph to form supernodes, which serve as the nodes of the coarsened
graph (Ying et al., 2018; Ma et al., 2019). After sub-sampling nodes or gener-
ating supernodes, the hierarchical graph pooling fpool can be summarized as:
(1) generating graph structure for the coarsened graph; (2) generating node
features for the coarsened graph. The graph structure for the coarsened graph
is generated from the input graph:

A′ = COARSEN(A) (18)

where A ∈ Rn×n is the adjacent matrix of the input graph, and A′ ∈ Rn′×n′

is the adjacent matrix of the coarsened graph. f(.) is the graph sub-sampling
or supernodes generating function.

0.4. Graph Construction Methods for NLP 19

0.4 Graph Construction Methods for NLP

In the previous section, we have discussed the basic foundations and methods
of GNNs once given a graph input. Unfortunately, for most of the NLP tasks,
the typical inputs are sequence of text rather than graphs. Therefore, how to
construct a graph input from sequences of text becomes a demanding step
in order to leverage the power of GNNs. In this chapter, we will focus on
introducing two major graph construction approaches, namely static graph
construction and dynamic graph construction for constructing graph structured
inputs in various NLP tasks.

0.4.1 Static Graph Construction

The static graph construction approach aims to construct the graph structures
during preprocessing typically by leveraging existing relation parsing tools
(e.g., dependency parsing) or manually defined rules. Conceptually, a static
graph incorporates different domain/external knowledge hidden in the original
text sequences, which augments the raw text with rich structured information.

In this subsection, we summarize various static graph construction meth-
ods in the GNN for NLP literature and group them into totally eleven cate-
gories, as shown in Table 2. We assume that the input is a document doc =
{para1, para2, ..., paran}, which consists of n paragraph denoted as para.
Similarly, a paragraph consisting of m sentences is denoted as parai =
{sent1, sent2, ..., sentm}. Each sentence then consists of l words denoted as
senti = {w1, w2, ..., wl}.

Static Graph Construction Approaches

Dependency Graph Construction The dependency graph is widely
used to capture the dependency relations between different objects in the given
sentences. Formally, given a paragraph, one can obtain the dependency parsing
tree (e.g., syntactic dependency tree or semantic dependency parsing tree) by
using various NLP parsing tools (e.g., Stanford CoreNLP (Lee et al., 2011)).
Then one may extract the dependency relations from the dependency parsing
tree and convert them into a dependency graph (Xu et al., 2018b; Song et al.,
2018c). Moreover, since the given paragraph has sequential information while
the graph nodes are unordered, one may introduce the sequential links to

20

Table 2: Two major graph construction approaches: static and dynamic graph constructions

Approaches Techniques References

Static Graph

Dependency Graph

Zhang et al. (2019a), Guo et al. (2019b), Zhang and Qian (2020), and Fei et al. (2020)
Bastings et al. (2017), Nguyen and Grishman (2018), Ji et al. (2019), and Liu et al. (2018b)
Xu et al. (2018c), Zhang et al. (2018c), Song et al. (2018e), and Li et al. (2017)
Do and Rehbein (2020), Yan et al. (2019), Marcheggiani et al. (2018), and Zhou et al. (2020b)
Vashishth et al. (2018), Xia et al. (2020), Jin et al. (2020a), and Huang and Carley (2019)
Sahu et al. (2019), Cui et al. (2020c), Xu et al. (2020c), and Zhang et al. (2020a)
Liu et al. (2019b), Li et al. (2020a), Wang et al. (2020b), and Tang et al. (2020a)
Qian et al. (2019), Pouran Ben Veyseh et al. (2020), and Wang et al. (2020c)

Constituency Graph Li et al. (2020a), Marcheggiani and Titov (2020), and Xu et al. (2018c)

AMR Graph

Liao et al. (2018), Wang et al. (2020f), Wang et al. (2020g), and Ribeiro et al. (2019b)
Jin and Gildea (2020), Jin et al. (2020a), and Cai and Lam (2020b)
Bai et al. (2020), Beck et al. (2018a), and Yao et al. (2020)
Zhang et al. (2020d), Zhao et al. (2020b), and Zhu et al. (2019b)
Song et al. (2020), Song et al. (2018d), Song et al. (2019), and Damonte and Cohen (2019)

Information Extraction Wu et al. (2020c) and Vashishth et al. (2018)
Graph Huang et al. (2020b) and Gupta et al. (2019)

Discourse Graph Song et al. (2018e), Li et al. (2020b), Yasunaga et al. (2017), and Xu et al. (2020a)

Knowledge Graph

Ye et al. (2019), Yang et al. (2019), Gupta et al. (2019), and Xu et al. (2020b)
Sun et al. (2020b), Xu et al. (2019a), and Wang et al. (2019f)
Kapanipathi et al. (2020), Zhang et al. (2019d), Zhang et al. (2020g), and Sun et al. (2018a)
Malaviya et al. (2020), Huang et al. (2020b), Schlichtkrull et al. (2018), and Sun et al. (2019b)
Bansal et al. (2019), Saxena et al. (2020), and Koncel-Kedziorski et al. (2019)
Teru et al. (2020), Lin et al. (2019a), Ghosal et al. (2020), and Feng et al. (2020a)
Wu et al. (2019b), Wu et al. (2019a), Wu et al. (2020c), and Wu et al. (2020b)
Wang et al. (2019a), Wang et al. (2019c), Wang et al. (2020h), and Wang et al. (2019g)
Zhao et al. (2020c), Shang et al. (2019), Jin et al. (2019), and Nathani et al. (2019a)
Sorokin and Gurevych (2018b), Cao et al. (2019b), Han et al. (2020), and Xie et al. (2020)

Coreference Graph
Sahu et al. (2019), Qian et al. (2019), Xu et al. (2020c), and Xu et al. (2020a)
De Cao et al. (2018) and Luan et al. (2019)

Topic Graph Linmei et al. (2019) and Li et al. (2020b)

Similarity Graph Construction
Xia et al. (2019), Yao et al. (2019b), and Yasunaga et al. (2017)
Linmei et al. (2019), Zhou et al. (2020a), and Wang et al. (2020a)
Liu et al. (2019a), Hu et al. (2020b), Jia et al. (2020), and Li et al. (2020b)

Co-occurrence Graph
Christopoulou et al. (2019), Zhang and Qian (2020), and Hu et al. (2020b)
Zhang et al. (2020f), Yao et al. (2019b), and De Cao et al. (2018)
Edouard et al. (2017), Zhu et al. (2018), and Liu et al. (2019a)

App-driven Graph

Ding et al. (2019b), Yin et al. (2020), Luo and Zhao (2020), and Ding et al. (2019a)
Sui et al. (2019), Tang et al. (2020c), Ran et al. (2019), and Hu et al. (2019e)
Gui et al. (2019), Li and Goldwasser (2019), Xiao et al. (2019), and Xu et al. (2018a)
Qu et al. (2020), Bogin et al. (2019b), Huo et al. (2019), and Shao et al. (2020)
Fernandes et al. (2019), Liu et al. (2020), Huang et al. (2019), and Linmei et al. (2019)
Bogin et al. (2019a), LeClair et al. (2020), Qiu et al. (2019), and Zheng et al. (2020)
Ferreira and Freitas (2020), Zheng and Kordjamshidi (2020), and Fang et al. (2020a)
Allamanis et al. (2018), Christopoulou et al. (2019), and Thayaparan et al. (2019)

Dynamic graph

Graph Similarity Node Embedding Based Chen et al. (2020h), Chen et al. (2020i), Chen et al. (2020f), and Chen et al. (2020a)
Metric Learning Structure-aware Liu et al. (2019c) and Liu et al. (2021b)

Graph Sparsification Techniques Chen et al. (2020h), Chen et al. (2020i), and Chen et al. (2020f)
Combining Intrinsic and

Chen et al. (2020f) and Liu et al. (2021b)
Implicit Graph Structures

reserve such vital information in the graph structure (Sahu et al., 2019; Qian
et al., 2019; Xu et al., 2018c; Li et al., 2017). Next, we will discuss a repre-
sentative dependency graph construction method given the inputs para and its
extracted parsing tree, including three key steps: 1) constructing dependency
relation, 2) constructing sequential relation, and 3) final graph conversion. An
example for the dependency graph is shown in Fig. 2.

Step 1: Dependency Relations. Given the sentences in a specific paragraph,
one first obtains the dependency parsing tree for each sentence. We denote
dependency relations in the dependency tree as (wi, reli,j , wj), where wi,

0.4. Graph Construction Methods for NLP 21

wj are the word nodes linked by an edge type reli,j . Conceptually, an edge
denotes a dependency relation "wi depends on wj with relation reli,j". We
define the dependency relation set as Rdep.
Step 2: Sequential Relations. The sequential relation encodes the adjacent
relation of the elements in the original paragraph. Specifically, for dependency
graph constructing, we define the sequential relation set Rseq ⊆ V × V ,
where V is the basic element (i.e., word) set. For each sequential relation
(wi, wi+1) ∈ Rseq, it means wi is adjacent to wi+1 in the given paragraph.
Step 3: Dependency Graph. The dependency graph G(V, E) consists of the
word nodes and two relations discussed above. Given the paragraph para,
dependency relation set Rdep, and the sequential relation set Rseq, firstly, for
each relation (wi, reli,j , wj) ∈ Rdep, one adds the nodes vi (for the word wi)
and vj (for the word wj) and a directed edge from node vi to node vj with
edge type reli,j . Secondly, for each relation (wi, wj) ∈ Rseq, one adds two
nodes vi (for the word wi) and vj (for the word wj) and an undirected edge
between nodes vi and vj with specific sequential type.

are there ada jobs outside austin

aux

expl

obj
nmod

case

are there ada jobs outside austin

S
VP

S

VP
NP

PP

Text input: are there ada jobs outside austin

Dependency
parsing

Constituency
parsing

Figure 2: An example is shown for the dependency graph (left) and the constituency graph
(right), respectively. The text input is from JOBS640 (Luke, 2005) dataset.

Constituency Graph Construction The constituency graph is another
widely used static graph that is able to capture phrase-based syntactic relations
in one or more sentences. Unlike dependency parsing, which only focuses
on one-to-one correspondences between single words (i.e., word level), con-
stituency parsing models the assembly of one or several corresponded words
(i.e., phrase level). Thus it provides a new insight about the grammatical struc-

22

ture of a sentence. In this following subsection, we will discuss the typical
approach for constructing a constituency graph (Li et al., 2020a; Marcheggiani
and Titov, 2020; Xu et al., 2018c). We first explain the basic concepts of the
constituency relations and then illustrate the constituency graph construction
procedure. An example for the Constituency graph is shown in Fig. 2.
Step 1: Constituency Relations. In linguistics, constituency relation means the
relation following the phrase structure grammars instead of the dependency
relation and dependency grammars. Generally, the constituency relation de-
rives from the subject(noun phrase NP)-predicate(verb phrase VP) relation.
In this part, we only discuss the constituency relation deriving from the con-
stituency parsing tree. Unlike the dependency parsing tree, in which all nodes
have the same type, the constituency parsing tree distinguishes between the
terminal and non-terminal nodes. Non-terminal categories of the constituency
grammar label the parsing tree’s interior nodes (e.g., S for sentence, and NP
for noun phrase). In contrast, the leaf nodes are labeled by terminal categories
(words in sentences). The nodes set can be denoted as: 1) non-terminal nodes
set Vnt (e.g. S and NP) and 2) terminal nodes set Vwords. The constituency
relation set are associated with the tree’s edges, which can be denoted as
Rcons ⊆ Vnt × (Vnt + Vwords).
Step 2: Constituency Graph. A constituency graph G(V, E) consists of both the
non-terminal nodes Vnt and the terminal nodes Vwords, and the constituency
edges as well as the sequential edges. Similar to the dependency graph, given a
paragraph para and the constituency relation set Rcons, for each constituency
relation (wi, reli,j , wj) ∈ Rcons, one adds the nodes vi (for the word wi) and
vj (for the word wj) and a directed edge from node vi to node vj . And then for
each word nodes pair (vi, vj) for the words which are adjacent in the original
text, one adds an undirected edge between them with the specific sequential
type. These sequential edges are used to reserve the sequential information (Li
et al., 2020a; Xu et al., 2018c).

AMR Graph Construction The AMR graphs are rooted, labeled, directed,
acyclic graphs, which are widely used to represent the high-level semantic
relations between abstract concepts of the unstructured and concrete natural
text. Different from the syntactic idiosyncrasies, the AMR is the high-level
semantic abstraction. More concretely, the different sentences that are seman-
tically similar may share the same AMR parsing results, e.g., "Paul described

0.4. Graph Construction Methods for NLP 23

nameperson

describe-01

“Paul”

fighter:ARG2

:ARG1

:ARG0 :name :op1

Figure 3: An example of AMR graph, the original sentence is "Paul’s description of himself: a
fighter".

himself as a fighter" and "Paul’s description of himself: a fighter", as shown
in Fig. 3. Despise the fact that the AMR is biased toward English, it is a
powerful auxiliary representation for linguistic analysis (Song et al., 2018d;
Damonte and Cohen, 2019; Wang et al., 2020f). Similar to the previously
introduced dependency and constituency trees, an AMR graph is derived from
an AMR parsing tree. Next, we focus on introducing the general procedure of
constructing the AMR graph based on the AMR parsing tree. We will discuss
the basic concept of AMR relation and then show how to convert the relations
into an AMR graph.

Step 1: AMR Relations. Conceptually, there are two types of nodes in the
AMR parsing tree: 1) the name (e.g. "Paul") is the specific value of the node
instance and 2) the concepts are either English words (e.g. "boy"), PropBank
framesets (Kingsbury and Palmer, 2002) (e.g. "want-01"), or special keywords.
The name nodes are the unique identities, while the concept nodes are shared
by different instances. The edges that connect nodes are called relations (e.g.
:ARG0 and :name). One may extract these AMR relations from the node pairs
with edges, which is denoted as (ni, ri,j , nj) ∈ Ramr.

Step 2: AMR Graph. The AMR graph G(V, E), which is rooted, labeled,
directed, acyclic graph (DAG), consists of the AMR nodes and AMR rela-
tions discussed above. Similar to the dependency and constituency graphs,
given the sentence sent and the AMR relation set Ramr, for each relation
(ni, ri,j , nj) ∈ Ramr, one adds the nodes vi (for the AMR node ni) and vj

(for the AMR node nj) and add a directed edge from node vi to node vj with
edge type ri,j

24

Text input: Paul, a renowned
computer scientist, grew up in
Seattle. He attended Lakeside

School.

grew up in

attended

Paul
He

a renowned …

Seattle

Lakeside
SchoolCoreference

OpenIE

Figure 4: An example for IE graph construction which contains both the Co-reference process
and the Open Information Extraction process.

Information Extraction Graph Construction The information extrac-
tion graph (IE Graph) aims to extract the structural information to represent the
high-level information among natural sentences, e.g., text-based documents.
These extracted relations that capture relations across distant sentences have
been demonstrated helpful in many NLP tasks (Wu et al., 2020c; Vashishth
et al., 2018; Gupta et al., 2019). In what follows, we will discuss the technical
details on how to construct an IE graph for a given paragraph para (Huang
et al., 2020b; Vashishth et al., 2018). We divide this process into two three
basic steps: 1) coreference resolution, 2) constructing IE relations, and 3)
graph construction.

Step 1: Coreference Resolution. Coreference resolution is the basic procedure
for information extraction task which aims to find expressions that refer to
the same entities in the text sequence (Huang et al., 2020b). As shown in
Figure 4, the name "Paul", the noun-term "He" and "a renowned computer
scientist" may refer to the same object (person). Many NLP tools such as
OpenIE (Angeli et al., 2015) provide coreference resolution function to achieve
this goal. We denotes the coreference cluster C as a set of phrases referring
to the same object. Given a paragraph, one can obtain the coreference sets
C = {C1, C2, ..., Cn} extracting from unstructured data.

Step 2: IE Relations. To construct an IE graph, the first step is to extract
the triples from the paragraphs, which could be completed by leveraging
some well-known information extraction systems (i.e. OpenIE (Angeli et al.,
2015)). We call each triple (subject, predicate, object) as a relation, which is
denoted (ni, ri,j , nj) ∈ Rie. It is worth noting if two triples differ only by one
argument, and the other arguments overlap, one only keep the longer triple.

Step 3: IE Graph Construction. The IE graph G(V, E) consists of the IE nodes

0.4. Graph Construction Methods for NLP 25

and IE relations discussed above. Given the paragraph para and the IE relation
set Rie, for each relation (ni, ri,j , nj) ∈ Rie, one adds the nodes vi (for the
subject ni) and vj (for the object nj) and add a directed edge from node vi to
node vj with the corresponding predicate types (Huang et al., 2020b). And
then, for each coreference cluster Ci ∈ C, one may collapse all coreferential
phrases in Ci into one node. This could help greatly reduce the number of
nodes and eliminate the ambiguity by keeping only one node.

Discourse Graph Construction Many NLP tasks suffer from long de-
pendency challenge when the candidate document is too long. The discourse
graph, which describes how two sentences are logically connected to one an-
other, are proved effective to tackle such challenge (Christensen et al., 2013).
In the following subsection, we will briefly discuss the discourse relations
between given sentences and then introduce the general procedure to construct
the discourse graphs (Song et al., 2018e; Li et al., 2020b; Yasunaga et al.,
2017; Xu et al., 2020a).
Step 1: Discourse Relation. The discourse relations derive from the discourse
analysis, which aims to identify sentence-wise ordering constraints over a
set of sentences. Given two sentences senti and sentj , one can define the
discourse relation as (senti, sentj), which represents the discourse relation
"sentence sentj can be placed after sentence senti." The discourse analysis
has been explored for years, and many theories have been developed for mod-
eling discourse relations such as the Rhetorical Structure Theory (RST) (Mann
and Thompson, 1987) and G-Flow (Christensen et al., 2013). In many NLP
tasks, given a document doc, one firstly segments doc into sentences set
V = {sent1, sent2, ..., sentm}. Then one applies discourse analysis to get
the pairwise discourse relation set denoted as Rsep ⊆ V × V .
Step 2: Discourse Graph. The discourse graph G(V, E) consists of the sen-
tences nodes and discourse relations discussed above. Given the document doc
and the discourse relation set Rdis, for each relation (senti, sentj) ∈ Rdis,
one adds the nodes vi (for the sentence senti) and vj (for the sentence sentj)
and add a directed edge from node vi to node vj .

Knowledge Graph Construction Knowledge Graph (KG) that captures
entities and relations can greatly facilitate learning and reasoning in many

26

Question: who acted in the movies directed by the director of [Some Mother's Son]
Answer: Don Cheadle, Joaquin Phoenix

[Some Mother's Son]

Hotel Rwanda

Terry George

Reservation Road

directed_by

starred_actors

Don Cheadle

starred_actors Joaquin Phoenix

Get the concept sub-
graph from KB

directed_by

directed_by

Figure 5: An example for knowledge graph construction, where the knowledge base (KB) used
and the generated concept graph are both from the dataset MetaQA (Zhang et al., 2018d).

NLP applications. In general, the KGs can be divided into two main categories
depending on their graph construction approaches. Many applications treat
the KG as the compact and interpretable intermediate representation of the
unstructured data (e.g., the document) (Wu et al., 2020c; Koncel-Kedziorski
et al., 2019; Huang et al., 2020b). Conceptually, it is almost similar to the IE
graph, which we have discussed previously. On the other hand, many other
works (Wu et al., 2020b; Ye et al., 2019; Bansal et al., 2019; Yang et al., 2019)
incorporate the existing knowledge bases such as YAGO (Suchanek et al.,
2008)) and ConceptNet (Speer et al., 2017) to further enhance the performance
of downstream tasks (Zhao et al., 2020c). In what follows, we will briefly
discuss the second category of KG from the view of the graph construction.

The KG can be denoted as G(V, E), which is usually constructed by
elements in knowledge base. Formally, one defines the triple (e1, rel, e2) as
the basic elements in the knowledge base, in which e1 is the source entity, e2
is the target entity, and rel is the relation type. Then one adds two nodes v1
(for the source element e1) and v2 (for the target element e2) in the KG and
add a directed edge from node v1 to node v2 with edge type rel. An example
of such KG is shown in Fig. 5.

It is worth noting that the KG plays different roles in various applica-
tions. In some applications (e.g. knowledge graph completion and knowledge
base question answering), KG is always treated as part of the inputs. In this

0.4. Graph Construction Methods for NLP 27

scenario (Ye et al., 2019; Zhang et al., 2020g; Li et al., 2019; Wu et al.,
2020a), researchers typically use the whole KG G as the learning object. But
for some other applications (e.g. natural language translation), the KG can
be treated as the data augmentation method. In this case, the whole KG such
as ConceptNet (Speer et al., 2017) is usually too large and noisy for some
domain-specific applications (Kapanipathi et al., 2020; Lin et al., 2019a), and
thus it is not suitable to use the whole graph as inputs. In contrast, as shown in
Figure 5, one instead usually constructs subgraphs from the given query (it is
often the text-based inputs like the queries in the reading comprehension task)
(Xu et al., 2019b; Teru et al., 2020; Kapanipathi et al., 2020).

The construction methods could may vary dramatically in the literature.
Here, we only present one representative method for illustration purpose (Teru
et al., 2020). The first thing for constructing KG is to fetch the term instances
in the given query. Then, they could link the term instances to the concepts in
the KG by some matching algorithms such as max-substring matching. The
concepts are regarded as the initial nodes in the extracted subgraph. Next step
is to fetch the 1-hop neighbors of the initial nodes in the KG. Additionally, one
may calculate the relevance of the neighbors with the initial nodes by applying
some graph node relevance model such as the Personalized PageRank (PPR)
algorithm (Page et al., 1999). Then based on the results, one may further prune
out the edges with relevance score that is below the confidence threshold and
remove the isolated neighbors. The remaining final subgraph is then used to
feed any graph representation learning module later.

Coreference Graph Construction In linguistics, coreference (or co-
reference) occurs when two or more terms in a given paragraph refer to the
same object. Many works have demonstrated that such phenomenon is helpful
for better understanding the complex structure and logic of the corpus and
resolve the ambiguities (Xu et al., 2020c; De Cao et al., 2018; Sahu et al.,
2019). To effectively leverage the coreference information, the coreference
graph is constructed to explicitly model the implicit coreference relations.
Given a set of phrases, a coreference graph can link the nodes (phrases) which
refer to the same entity in the text corpus. In the following subsection, we focus
on the coreference graph construction for a paragraph para consisting of m
sentences. We will briefly discuss the coreference relation and then discuss the
approaches for building the coreference graph in various NLP tasks (De Cao

28

et al., 2018; Sahu et al., 2019; Qian et al., 2019; Xu et al., 2020c; Xu et al.,
2020a; Luan et al., 2019). It is worth noting that although it is similar to the IE
graph’s first step, the coreference graph will explicitly model the coreference
relationship by graph instead of collapse into one node.

Step 1: Coreference Relation. The coreference relations can be obtained easily
by the coreference resolution system, as discussed in IE graph construction.
Similarly, we can obtain the coreference clusters C given a specific paragraph.
All phrases in a cluster Ci ∈ C refer to the same object.

Step 2: Coreference Graph. The coreference graph are built on the corefer-
ence relation set Rcoref . It can be generally divided into two main category
depending on the node type: 1) phrases (or mentions) (Koncel-Kedziorski
et al., 2019; Luan et al., 2019; De Cao et al., 2018), 2) words (Sahu et al.,
2019). For the first class, the coreference graph G consists of all mentions in
relation set Rcoref . For each phrase pair pi, pj in cluster Ck ∈ C, one may add
an undirected edge between node vi (for the phrase pi) and node vj (for the
phrase pj). For the second case, the coreference graph G consists of words.
One minor difference is that one only links the first word of each phrase for
each associated phrases.

Sentence
TF-IDF vector

Sentence

souness backs smith
for scotland

uk will stand firm on
eu rebate

qpr keeper day heads
for preston

former ni minister
scott dies

Cranes: Flying giant
returning to Ireland

after 300 years

Figure 6: An example for similarity graph construction. We use sentences as nodes and
initialize their features with TF-IDF vectors.

0.4. Graph Construction Methods for NLP 29

Similarity Graph Construction The similarity graphs aim to quantify the
similarity between nodes, which are widely used in many NLP tasks (Liu et al.,
2019a; Linmei et al., 2019; Yasunaga et al., 2017). Since the similarity graph is
typically application-oriented, we focus on the basic procedure of constructing
the similarity graph for various types of elements such as entities, sentences
and documents, and neglect the application specific details. It is worth noting
that the similarity graph construction is conducted during preprocessing and
is not jointly trained with the remaining learning system in an end-to-end
manner. One example of similarity graph is shown in Fig. 6.
Step 1: Similarity Graph. Given a corpus C, in a similarity graph G(V, E),
the graph nodes can be defined in different granularity levels such as entities,
sentences and documents. We denote the basic node set as V regardless of spe-
cific node types. One can calculate the node features by various mechanisms
such as TF-IDF for sentences (or documents) (Liu et al., 2019a; Yasunaga
et al., 2017) and embeddings for entities (Linmei et al., 2019). Then, similarity
scores between node pairs can be computed by various metrics such as cosine
similarity (Liu et al., 2019a; Linmei et al., 2019; Yasunaga et al., 2017), and
used to indicate edge weights of the node pairs.
Step 2: Sparse mechanism. The initial similarity graph is typically dense even
some edge weights are very small or even negative. These values can be
treated as noise, which plays little roles in the similarity graph. Thus various
sparse techniques are proposed to further improve the quality of graph by
sparsifying a graph. One widely used sparse method is k-NN (Liu et al.,
2019a). Specifically, for node vi and its’ neighbor set N(vi), one only reserves
edges by keeping k largest edge weights and dropping the remaining edges.
The other widely used method is ϵ−sparse (Linmei et al., 2019; Yasunaga
et al., 2017). In particular, one will remove the edges whose weights are
smaller than the certain threshold ϵ.

Co-occurrence Graph Construction The co-occurrence graph aims
to capture the co-occurrence relation between words in the text, which is
widely used in many NLP tasks (Christopoulou et al., 2019; Zhang and Qian,
2020; Zhang et al., 2020f). The co-occurrence relation, which describes the
frequency of two words that co-occur within a fix-sized context window, is
an important feature capturing the semantic relationship among words in the
corpus. In what follows, we will first present the approaches of obtaining the

30

Text input: To be, or not to be: …

Co-occurrence graph

or be

to not

to be or not

to 2 2 1

be 2 1 2

or 2 1 1

not 1 2 1

Co-occurrence matrix

1

2

2

1

2

2

Figure 7: An example for co-occurrence graph construction where edge weights stand for the
co-occurrence frequency between words. We set the window size as 3.

co-occurrence relations and then discuss the basic procedure of building a
co-occurrence graph for a corpus C. An example of co-occurrence graph can
be seen in Fig. 7.
Step 1: Co-occurrence Relation. The co-occurrence relation is defined by the
co-occurrence matrix of the given corpus C. For a specific paragraph para
consists of m sentences, the co-occurrence matrix describes how words occur
together. One may denote the co-occurrence the matrix as M ∈ R|V |×|V |,
where |V | is the vocabulary size of C. Mwi,wj describes how many times
word wi, wj occur together within a fix-size sliding windows in the corpus
C. After obtaining the co-occurrence matrix, there are two typical methods
to calculate the weights between words: 1) co-occurrence frequency (Zhang
et al., 2020f; Christopoulou et al., 2019; Zhang and Qian, 2020; Edouard et al.,
2017; Zhu et al., 2018) and 2) point-wise mutual information (PMI) (Yao
et al., 2019b; Hu et al., 2020b; Hu et al., 2019b).
Step 2: Co-occurrence Graph. The co-occurrence graph G(V, E) consists of
the words nodes and co-occurrence relations discussed above. Given the corpus
C and the co-occurrence relation set Rco, for each relation (wi, wj) ∈ Rco,
one adds the nodes vi (for the word wi) and vj (for the word wj) and add an
undirected edge from node vi to node vj initialized with the aforementioned
calculated edge weights.

Topic Graph Construction The topic graph is built on several docu-
ments, which aims to model the high-level semantic relations among different
topics (Linmei et al., 2019; Li et al., 2020b). In particular, given a set of docu-

0.4. Graph Construction Methods for NLP 31

Business

There was the $5 million Deutsche Bank Championship to
prepare for and the Ryder Cup is a few weeks away, but the
first order of business for Jim Furyk yesterday was to make

sure his wife and children were headed for safety.

Dolphin groups, or "pods", rely on socialites to keep them
from collapsing, scientists claim.

A sports psychologist says how footballers should prepare
themselves for the high-pressure penalties.

Research

Sports

Figure 8: An example for topic graph construction, where the dash line stands for the topic
modeling process by leveraging the LDA algorithm on dataset AG news (Zhang et al., 2015).

ments D = {doc1, doc2, ..., docm}, one first learns the latent topics denoted
as T using some topic modeling algorithms such as LDA (Blei et al., 2003).
Then one could construct the topic graph G(V, E) with V = D ∪ T . The
undirected edge between the node vi (for a document) and the node vj (for a
topic) is built only if the document has that topic. An example of topic graph
is shown in Fig. 8.

SQL query input: SELECT company WHERE assets > val0 AND sales > val0 AND industry_rank ≤ val1

Application
driven

SELECT ANDcompany

assets> val0sales

industry_rank ≤ val1

Figure 9: An example for application-driven graph construction, which is specially designed
for SQL query input.

App-driven Graph Construction The app-driven graphs refer to the
graph specially designed for specific NLP tasks (Gui et al., 2019; Ding et
al., 2019b; Yin et al., 2020; Luo and Zhao, 2020), which cannot be trivially
covered by the previously discussed static graph types. In some NLP tasks,

32

it is common to represent unstructured data by structured formation with
application-specific approaches. For example, the SQL language can be natu-
rally represented by the SQL parsing tree. Thus it can be converted to the SQL
graph (Xu et al., 2018a; Bogin et al., 2019a; Huo et al., 2019; Bogin et al.,
2019b). Since these graphs are too specialized based on the domain knowledge,
there are no unified pattern to summarize how to build an app-driven graph.
An example of such application-driven graph like SQL graph is illustrated
in Fig. 9. In Sec. 0.7, we will further discuss how these graph construction
methods are used in various popular NLP tasks.

Hybrid Graph Construction and Discussion

Most previous static graph construction methods only consider one specific
relation between nodes. Although the obtained graphs capture the structure
information well to some extent, they are also limited in exploiting different
types of graph relations. To address this limitation, there is an increasing
interest in building a hybrid graph by combing several graphs together in
order to enrich the semantic information in graph (Jia et al., 2020; Sahu et al.,
2019; Xu et al., 2018c; Zeng et al., 2020; Xu et al., 2020c; Xu et al., 2020a;
Christopoulou et al., 2019; Yao et al., 2019b). The method of constructing a
hybrid graph is mostly application specific, and thus we only present some
representative approach for such a graph construction.

To capture multiple relations, a common strategy is to construct a hetero-
geneous graph, which contains multiple types of nodes and edges. Without
losing generality, we assume that one may create a hybrid graph Ghybrid with
two different graph sources Ga(Va, Ea) and Gb(Vb, Eb). Graphs a, b are two
different graph types such as dependency graph and constituency graph. Given
these textual inputs, if Ga and Gb share the same node sets (i.e., Va = Vb),
we merge the edge sets by annotating relation-specific edge types (Xu et al.,
2018c; Sahu et al., 2019; Zeng et al., 2020; Xu et al., 2020c; Xu et al., 2020a).
Otherwise, we merge the Va and Vb to get the hybrid node set, denoted as
V = Va ∪ Vb (Jia et al., 2020; Christopoulou et al., 2019). Then we generate
Ea and Eb to E by mapping the source and target nodes from Va and Vb to V .

0.4. Graph Construction Methods for NLP 33

0.4.2 Dynamic Graph Construction

Although static graph construction has the advantage of encoding prior knowl-
edge of the data into the graph structure, it has several limitations. First of
all, extensive human efforts and domain expertise are needed in order to
construct a reasonably performant graph topology. Secondly, the manually
constructed graph structure might be error-prone (e.g., noisy or incomplete).
Thirdly, since the graph construction stage and graph representation learning
stage are disjoint, the errors introduced in the graph construction stage cannot
be corrected and might be accumulated to later stages, which can result in de-
graded performance. Lastly, the graph construction process is often informed
solely by the insights of the NLP practitioners, and might be sub-optimal for
the downstream prediction task.

Figure 10: Overall illustration of dynamic graph construction approaches. Dashed lines (in
data points on left) indicate the optional intrinsic graph topology.

In order to tackle the above challenges, recent attempts on GNN for
NLP (Chen et al., 2020f; Chen et al., 2020i; Liu et al., 2021b; Liu et al.,
2019c) have explored dynamic graph construction without resorting to human
efforts or domain expertise. Most dynamic graph construction approaches aim
to dynamically learn the graph structure (i.e., a weighted adjacency matrix) on
the fly, and the graph construction module can be jointly optimized with the
subsequent graph representation learning modules toward the downstream task
in an end-to-end manner. One good example of dynamic graph construction
is when constructing a graph capturing the semantic relationships among all
the words in a text passage in the task of conversational machine reading
comprehension (Reddy et al., 2019), instead of building a fixed static graph
based on domain expertise, one can jointly train a graph structure learning
module together with the graph embedding learning module in order to learn
an optimal graph structure considering not only the semantic meanings of the
words but also the conversation history and current question.

As shown in Fig. 10, these dynamic graph construction approaches typi-

34

cally consist of a graph similarity metric learning component for learning an
adjacency matrix by considering pair-wise node similarity in the embedding
space, and a graph sparsification component for extracting a sparse graph from
the learned fully-connected graph. It is reported to be beneficial to combine
the intrinsic graph structures and learned implicit graph structures for better
learning performance (Li et al., 2018a; Chen et al., 2020f; Liu et al., 2021b).
Moreover, in order to effectively conduct the joint graph structure and repre-
sentation learning, various learning paradigms have been proposed. In what
follows, we will discuss all these effective techniques for dynamic graph con-
struction. More broadly speaking, graph structure learning for GNNs itself is a
trending research problem in the machine learning field, and has been actively
studied beyond the NLP community (Li et al., 2018a; Norcliffe-Brown et al.,
2018; Velickovic et al., 2020; Kalofolias and Perraudin, 2019; Franceschi
et al., n.d.). However, in this survey, we will focus on its recent advances in the
NLP field, as shown in Table 2. We hereafter use dynamic graph construction
and graph structure learning interchangeably.

Graph Similarity Metric Learning Techniques

Based on the assumption that node attributes contain useful information for
learning the implicit graph structure, recent work has explored to cast the graph
structure learning problem as the problem of similarity metric learning defined
upon the node embedding space. The learned similarity metric function can be
later applied to an unseen set of node embeddings to infer a graph structure,
thus enabling inductive graph structure learning. For data deployed in non-
Euclidean domains like graphs, the Euclidean distance is not necessarily the
best metric for measuring node similarity. Various similarity metric functions
have been proposed for graph structure learning for GNNs. According to
the types of information sources utilized, we group these metric functions
into two categories: Node Embedding Based Similarity Metric Learning and
Structure-aware Similarity Metric Learning.

Node Embedding Based Similarity Metric Learning Node embed-
ding based similarity metric functions are designed to learn a weighted adja-
cency matrix by computing the pair-wise node similarity in the embedding
space. Common metric functions include attention-based metric functions and

0.4. Graph Construction Methods for NLP 35

cosine-based metric functions.
Attention-based Similarity Metric Functions. Most of the similarity metric
functions proposed so far are based on the attention mechanism (Bahdanau
et al., 2015; Vaswani et al., 2017). In order to increase the learning capacity
of dot product based attention mechanism, Chen et al. (2020h) proposed
a modified dot product by introducing learnable parameters, formulated as
follows:

Si,j = (vi ⊙ u)T vj (19)

where u is a non-negative weight vector learning to highlight different dimen-
sions of the node embeddings, and ⊙ denotes element-wise multiplication.

Similarly, Chen et al. (2020i) designed a more expressive version of dot
product by introducing a learnable weight matrix, formulated as follows:

Si,j = ReLU(Wvi)T ReLU(Wvj) (20)

where W is a d× d weight matrix, and ReLU(x) = max(0, x) is a rectified
linear unit (ReLU) (Nair and Hinton, 2010) used to enforce the sparsity of the
similarity matrix.
Cosine-based Similarity Metric Functions. Chen et al. (2020f) extended the
vanilla cosine similarity to a multi-head weighted cosine similarity to capture
pair-wise node similarity from multiple perspectives, formulated as follows:

Sp
i,j = cos(wp ⊙ vi,wp ⊙ vj)

Si,j = 1
m

m∑
p=1

Sp
ij

(21)

where wp is a weight vector associated to the p-th perspective, and has the same
dimension as the node embeddings. Intuitively, Sp

i,j computes the pair-wise
cosine similarity for the p-th perspective where each perspective considers
one part of the semantics captured in the embeddings. Besides increasing
the learning capacity, employing multi-head learners is able to stabilize the
learning process, which has also been observed in (Vaswani et al., 2017;
Velickovic et al., 2018).

Structure-aware Similarity Metric Learning Inspired by structure-
aware transformers (Zhu et al., 2019c; Cai and Lam, 2020b), recent approaches
employ structure-aware similarity metric functions that additionally consider

36

the existing edge information of the intrinsic graph beyond the node infor-
mation. For instance, Liu et al. (2019c) proposed a structure-aware attention
mechanism for learning pair-wise node similarity, formulated as follows:

Sl
i,j = softmax(uT tanh(W[hl

i,hl
j ,vi,vj , ei,j])) (22)

where vi represents the embedding of node i, ei,j represents the embedding
of the edge connecting node i and j, hl

i is the embedding of node i in the
l-th GNN layer, and u and W are trainable weight vector and weight matrix,
respectively.

Similarly, Liu et al. (2021b) introduced a structure-aware global attention
mechanism, formulated as follows,

Si,j = ReLU(WQvi)T (ReLU(WKvi) + ReLU(WRei,j))√
d

(23)

where ei,j is the embedding of the edge connecting node i and j, and WQ,
WK , and WR are linear transformations that map the node and edge embed-
dings to the latent embeddding space.

Graph Sparsification Techniques

Most graphs in real-world scenarios are sparse graphs. Similarity metric
functions consider relations between any pair of nodes and returns a fully-
connected graph, which is not only computationally expensive but also might
introduce noise such as unimportant edges. Therefore, it can be beneficial to
explicitly enforce sparsity to the learned graph structure. Besides applying
the ReLU function in the similarity metric functions (Chen et al., 2020i; Liu
et al., 2021b), various graph sparsification techniques have been adopted to
enhance the sparsity of the learned graph structure.

Chen et al. (2020i) and Chen et al. (2020h) applied a kNN-style sparsifi-
cation operation to obtain a sparse adjacency matrix from the node similarity
matrix computed by the similarity metric learning function, formulated as
follows:

Ai,: = topk(Si,:) (24)

where for each node, only the K nearest neighbors (including itself) and the
associated similarity scores are kept, and the remaining similarity scores are
masked off.

0.4. Graph Construction Methods for NLP 37

Chen et al. (2020f) enforced a sparse adjacency matrix by considering
only the ε-neighborhood for each node, formulated as follows:

Ai,j =
{
Si,j Si,j > ε

0 otherwise
(25)

where those elements in S which are smaller than a non-negative threshold ε
are all masked off (i.e., set to zero).

Besides explicitly enforcing the sparsity of the learned graph by apply-
ing certain form of threshold, sparsity has also been enforced implicitly in a
learning-based manner. Chen et al. (2020f) introduced the following regular-
ization term to encourage sparse graphs.

1
n2 ||A||2F (26)

where || · ||F denotes the Frobenius norm of a matrix.

Combining Intrinsic Graph Structures and Implicit Graph Struc-
tures

Recent studies (Li et al., 2018a; Chen et al., 2020f; Liu et al., 2021b) have
shown that it could hurt the downstream task performance if the intrinsic
graph structure is totally discard while doing dynamic graph construction.
This is probably because the intrinsic graph typically still carries rich and
useful information regarding the optimal graph structure for the downstream
task. They therefore proposed to combine the learned implicit graph structure
with the intrinsic graph structure based on the assumption that the learned
implicit graph is potentially a “shift” (e.g., substructures) from the intrinsic
graph structure which is supplementary to the intrinsic graph structure. The
other potential benefit is incorporating the intrinsic graph structure might help
accelerate the training process and increase the training stability. Since there
is no prior knowledge on the similarity metric and the trainable parameters
are randomly initialized, it may usually take long time to converge.

Different ways for combining intrinsic and implicit graph structures have
been explored. For instance, Li et al. (2018a) and Chen et al. (2020f) proposed
to compute a linear combination of the normalized graph Laplacian of the
intrinsic graph structure L(0) and the normalized adjacency matrix of the

38

implicit graph structure f(A), formulated as follows:

Ã = λL(0) + (1 − λ)f(A) (27)

where f : Rn×n → Rn×n can be arbitrary normalization operations such as
graph Laplacian operation (Li et al., 2018a) and row-normalization opera-
tion (Chen et al., 2020f). Instead of explicitly fusing the two graph adjacency
matrices, Liu et al. (2021b) proposed a hybrid message passing mechanism
for GNNs which fuses the two aggregated node vectors computed from the
intrinsic graph and the learned implicit graph, respectively, and then feed the
fused vector to a GRU to update node embeddings.

Learning Paradigms

Most existing dynamic graph construction approaches for GNNs consist of
two key learning components: graph structure learning (i.e., similarity met-
ric learning) and graph representation learning (i.e., GNN module), and the
ultimate goal is to learn the optimized graph structures and representations
with respect to certain downstream prediction task. How to optimize the two
separate learning components toward the same ultimate goal becomes an im-
portant question. Here we highlight three representative learning paradigms.
The most straightforward strategy (Chen et al., 2020i; Chen et al., 2020h; Liu
et al., 2021b) is to jointly optimize the whole learning system in an end-to-end
manner toward the downstream (semi-)supervised prediction task. Another
common strategy (Yang et al., 2018b; Liu et al., 2019c; Huang et al., 2020a)
is to adaptively learn the input graph structure to each stacked GNN layer to
reflect the changes of the intermediate graph representations. This is similar to
how transformer models learn different weighted fully-connected graphs in
each layer. Unlike the above two paradigms, Chen et al. (2020f) proposed an
iterative graph learning framework by learning a better graph structure based
on better graph representations, and in the meantime, learning better graph
representations based on a better graph structure in an iterative manner. As a
result, this iterative learning paradigm repeatedly refines the graph structure
and the graph representations toward the optimal downstream performance.

0.5. Graph Representation Learning for NLP 39

0.5 Graph Representation Learning for NLP

In the previous section, we have presented various graph construction methods,
including static graph construction and dynamic graph construction. In this
section, we will discuss various graph representation learning techniques that
are directly operated on the constructed graphs for various NLP tasks. The goal
of graph representation learning is to find a way to incorporate information
of graph structures and attributes into a low-dimension embeddings via a
machine learning model (Hamilton et al., 2017b). To mathematically formalize
this problem, we give the mathematical notations for arbitrary graphs as
G(V, E , T ,R), where V is the node set, E is the edge set, T = {T1, T2, ..., Tp}
is the collection of node types, and R = {R1, ..., Rq} is the collection of edge
types. | · | is the number of elements. τ(·) ∈ T is the node type indicator
function (e.g., τ(vi) ∈ T is the type of node vi), and ϕ(·) ∈ R is the edge type
indicator function (e.g., ϕ(ei,j) ∈ R is the type of edge ei,j), respectively.

Generally speaking, the constructed graphs from the raw text data are
either homogeneous or heterogeneous graphs. Thus, in Section 0.5.1, we
will discuss various graph representation learning methods for homogeneous
graphs, including scenarios for the original homogeneous graph and some
converting from heterogeneous graphs. In Section 0.5.2, we will discuss the
GNN-based methods for multi-relational graphs, and in Section 0.5.3, we will
discuss the GNNs for dealing with the heterogeneous graphs.

0.5.1 GNNs for Homogeneous Graphs

By definition, a graph G(V, E , T ,R), s.t.|T | = 1, |R| = 1 is called homoge-
neous graph. Most graph neural networks such as GCN, GAT, and GraphSage
are designed for homogeneous graphs, which, however, can not fit well in
many NLP tasks. For example, given a natural language text, the constructed
dependency graph is arbitrary graph that contains multiple relations, which
cannot be exploited by traditional GNN methods directly. Thus, in this subsec-
tion, we will first discuss the various strategies for converting arbitrary graphs
to homogeneous graphs, including static graphs and dynamic graphs. Then,
we will discuss the graph neural networks considering bidirectional encoding.

40

Static Graph: Treating Edge Information as Connectivity

GNNs for dealing with the static graphs normally consists of two stages,
namely, converting edge information and node representation learning, as
described in the following.

Converting Edge Information to Adjacent Matrix Basically, the edges
are viewed as the connection information between nodes. In this case, it is
normal to discard the edge type information and retain the connections to
convert the heterogeneous graphs (Yang et al., 2019; Zhang et al., 2019a; Yao
et al., 2019b; Wu et al., 2019b; Li et al., 2019) to homogeneous graphs. After
obtaining such a graph, we can represent the topology of the graph as a unified
adjacency matrix A. Specifically, for an edge ei,j ∈ E which connect node vi

and vj , Ai,j denotes to the edge weight for weighted static graph, or Ai,j = 1
for unweighted connections and Ai,j = 0 otherwise. The static graphs can
also be divided into directed and undirected graphs. For the undirected case,
the adjacency matrix is symmetric matrix, which means Ai,j = Aj,i. And
for the other case, it is always not symmetric. The Ai,j is strictly defined by
the edge from node vi to node vj . It is worth noting that the directed graphs
can be transformed to undirected graphs (Yasunaga et al., 2017) by averaging
the edge weights in both directions. The edge weights are rescaled, whose
maximum edge weight is 1 before feeding to the GNN.

Node Representation Learning Next, given initial node embedding
X and adjacency matrix A, the node representation is extracted base on the
classical GNNs techniques. For undirected graphs, most works (Liu et al.,
2019b; Wang et al., 2018; Yao et al., 2019b; Zhang et al., 2020e) mainly
adopt graph representation learning algorithms such as GCN, GGNN, GAT,
GraphSage, etc. and stack them to explore deep semantic correlations in
the graph. When it comes to the directed graphs, few GNN methods such
as GGNN, GAT still work (Chen et al., 2020h; Wang et al., 2020d; Qiu
et al., 2019; Yan et al., 2019; Ji et al., 2019; Sui et al., 2019). While for
the other GNNs that can not be directly applied into directed graphs, the
simple strategy is to ignore the directions (i.e., converting the directed graphs
to undirected graphs) (Yasunaga et al., 2017; Wang et al., 2018; Liu et al.,
2019b). However, such methods allow the message to propagate in both

0.5. Graph Representation Learning for NLP 41

directions without constraints. To solve this problem, many efforts have been
made to adapt the GNN to directed graphs. For GCN, some spatial-based
GCN algorithms are designed for directed graphs such as DCNN (Atwood
and Towsley, 2016). GraphSage can be easily extended to directed graphs by
modifying the aggregation function via specifying the edge directions and
aggregating them separately) (Xu et al., 2018b).

Dynamic Graph

Dynamic graphs that aim to learn the graph structure together with the down-
stream task jointly are widely adopted by graph representation learning (Chen
et al., 2020i; Chen et al., 2020h; Chen et al., 2020f; Hashimoto and Tsuruoka,
2017; Guo et al., 2019b). Early works mainly adopt the recurrent network by
treating the graph node embeddings as RNN’s state encodings (Hashimoto
and Tsuruoka, 2017), which can be regarded as the rudiment of GGNN. Then
the classic GNNs such as GCN (Guo et al., 2019b), GAT (Cui et al., 2020b),
GGNN (Chen et al., 2020i; Chen et al., 2020h) are utilized to learn the graph
embedding effectively. Recent researchers adopt attention-based or metric
learning-based mechanisms to learn the implicit graph structure (i.e., the graph
adjacency matrix A) from unstructured texts. The learning process of graph
structure is jointly with the downstream tasks via an end-to-end fashion (Shaw
et al., 2018; Chen et al., 2020h; Luan et al., 2019; Chen et al., 2020i).

Graph Neural Networks: Bidirectional Graph Embeddings

In the previous sub-sections, we present the typical techniques for construct-
ing and learning node embeddings from the static homogeneous graphs. In
this subsection, we provide a detailed discuss on how to handle the edge
directions. In reality, many graphs are directed acyclic graphs (DAG) (Cai
and Lam, 2020b), which information is propagated along the specific edge
direction. However, some researchers allow the information propagate equally
in both directions (Yasunaga et al., 2017; Wang et al., 2018; Liu et al., 2019b)
and others discard the information containing in outgoing edges (Yan et al.,
2019; Wang et al., 2020d; Qiu et al., 2019; Ji et al., 2019; Sui et al., 2019),
both of which will lose some important structure information for the final
representation learning.

42

To deal with this, bidirectional graph neural network (bidirectional GNN)
is proposed to learn the node representation from both incoming and outgoing
edges in a interleaved fashion. To introduce different variants of bidirectional
GNN, we first give some unified mathematical notations. For a specific node
vi ∈ V in the graph G(V, E) and its neighbor nodes N(vi) (i.e. any node vj

satisfy ei,j ∈ E or ej,i ∈ E), we define the incoming (backward) nodes set as
N⊣(vi) satisfying ej,i ∈ E , vj ∈ N⊣(vi) and outgoing (forward) nodes set as
N⊢(vi) holding ei,j ∈ E , vj ∈ N⊢(vi).

Xu et al. (2018b) firstly extend the GraphSage to a bi-directional version
by calculating the graph embedding separately for each direction and combine
them at last. At each computation hop, for each node in the graph, they
aggregate the incoming nodes and outgoing nodes separately to get backward
and forward immediate-aggregated representation as follows:

h(k)
i,⊣ = σ(W(k) · f⊣

k (h(k−1)
i,⊣ , {h(k−1)

j,⊣ , ∀vj ∈ N⊣(vi)})),

h(k)
i,⊢ = σ(W(k) · f⊢

k (h(k−1)
i,⊢ , {h(k−1)

j,⊢ , ∀vj ∈ N⊢(vi)})),
(28)

where k ∈ {1, 2, ...,K} denotes the layer number, and h(k)
i,⊣ ,h

(k)
i,⊢ denote the

backward and forward aggregated results respectively. At the final step, the
final forward and backward representation is concatenated to calculate the
final bi-directional representation.

Although works effectively, the bidirectional GraphSage learns both di-
rections separately. To this end, Chen et al. (2020i) proposes the bidirectional
GGNN to address this issue. Technically, at each iteration, after obtaining
aggregated vector representations h(k)

i,⊢ ,h
(k)
i,⊣ , they opt to fuse them into one

vector as follows:
h(k)

N(vi) = Fuse(h(k)
i,⊢ ,h

(k)
i,⊣), (29)

where the function Fuse(·, ·) is the gated sum of two information sources:

Fuse(a,b) = z⊙a+(1−z)⊙b, z = σ(Wz[a,b,a⊙b,a−b]+bz) (30)

where a ∈ Rd,b ∈ Rd are inputs, Wz ∈ Rd×4d,bz ∈ Rd are learnable
weights and σ(·) is the sigmoid function. Then, a Gated Recurrent Unit (GRU)
is used to update the node embeddings by incorporating the aggregation
information as follows:

h(k)
i = GRU(h(k−1)

i ,h(k)
N(vi)). (31)

0.5. Graph Representation Learning for NLP 43

Unlike previous methods, which are specially designed for the specific
GNN methods, Ribeiro et al. (2019a) further proposes a general bidirectional
GNN framework, which can be easily applied to most existing GNNs. Techni-
cally, they first encode the graph in two directions:

h(k)
i,⊣ = GNN(h(k−1)

i , {h(k−1)
j : ∀vj ∈ N⊣(vi)}),

h(k)
i,⊢ = GNN(h(k−1)

i , {h(k−1)
j : ∀vj ∈ N⊢(vi)}),

(32)

where GNN(·) can denote to any variant of GNNs. Similar to strategy in
the bidirectional RNNs (Schuster and Paliwal, 1997), they learn the forward
and backward directions separately and concatenate them together with the
original node feature as follows:

h(k)
i = [h(k)

i,⊣ ,h
(k)
i,⊢ ,h

(k−1)
i]. (33)

They stack several layers to achieve better performance. At last, the h(K)
i is

employed in a sequence input of a Bi-LSTM in depth-first order to the final
node representation.

0.5.2 Graph Neural Networks for Multi-relational Graphs

In practice, many graphs have various edge types, such as knowledge graph,
AMR graph, etc., which can be formalized as multi-relational graphs. For-
mally, for a graph G, s.t. |T | = 1 and |R| > 1 is defined as multi-relational
graphs. In this section, we introduce different techniques for representing
and learning the multi-relational graphs. Specifically, in Section. 0.5.2, we
will discuss the formalization for the multi-relational graphs from an original
heterogeneous graph. In Section. 0.5.2 and 0.5.2, we will discuss the basic
graph representation learning methods and transformers for relational hetero-
geneous, respectively (we denote it as multi-relational graph neural network
for simplification).

Multi-relational Graph Formalization

Since heterogeneous graphs are commonly observed in NLP domian, such
as knowledge graph, AMR graph, etc, most of the researchers (Guo et al.,
2019c; Ribeiro et al., 2019a; Beck et al., 2018a; Damonte and Cohen, 2019;
Koncel-Kedziorski et al., 2019) propose to convert it to a multi-relational

44

graph, which can be learned by relational GNN in Section. 0.5.2 and Section.
0.5.2.

As defined before, the multi-relational graph is denoted as G(V, E , T ,R),
s.t. |T | = 1 and |R| >= 1. To get the multi-relational graph, technically,
they ignore node types (i.e., project the nodes to the unified embedding space
regardless of original nodes or relational nodes). As for edges, they assign the
initial edges with the type "default". For each edge ei,j , they add a reverse
edge ej,i with type "reverse". Besides, for each node vi, they add the self-loops
with the type "self". Thus the converted graph is the multi-relational graph
with |E| = 3 and |V | = 1.

Multi-relational Graph Neural Networks

The multi-relational GNN is the extension of classic GNN for multi-relational
graphs, which has the same node type but different edge types. They are
originally introduced to encode relation-specific graphs such as knowledge
graphs (Schlichtkrull et al., 2018; Malaviya et al., 2020) and parsing graphs (Beck
et al., 2018a; Song et al., 2019), which have complicated relationships between
nodes with the same type. Generally, most multi-relational GNNs employ
type-specific parameters to model the relations individually. In this subsection,
we will introduce the classic relational GCN (R-GCN) (Schlichtkrull et al.,
2018), relational GGNN (R-GGNN) (Beck et al., 2018a) and relational GAT
(R-GAT) (Wang et al., 2020b; Wang et al., 2020h).

R-GCN The R-GCN (Schlichtkrull et al., 2018) is explicitly developed to
handle highly multi-relational graphs, especially knowledge bases. The R-
GCN is a natural extension of the message-passing GCN framework (Gilmer
et al., 2017) which operates on local graph neighborhoods. They group the
incoming nodes according to the label types and then apply messaging passing
separately. Thus, the aggregation of node vi’s immediate neighbor nodes is
defined as

h(k)
i = σ(

∑
r∈E

∑
vj∈Nr(vi)

1
ci,r

W(k)
r h(k−1)

j + W(k)
0 h(k−1)

i), (34)

where W(k)
r ∈ Rd×d,W(k)

0 ∈ Rd×d are trainable parameters, Nr(vi) is the
neighborhoods of node vi with relation r ∈ E , ci,r is the problem-specific

0.5. Graph Representation Learning for NLP 45

normalization scalar such as |Nr(vi)|, and σ(·) is the ReLU activation function.
Intuitively, such a step projects neighbor nodes with different relations by
relation-specific transformation to unified feature space and then accumulates
them through a normalized sum. The self-connection with a special relation
type is added to ensure the node itself feature can be held.

However, modeling the multi-relations using separate parameters for each
relation can lead to severe over-parameterization, especially on the rare rela-
tions. Thus two regularization methods: basis and basis-diagonal-decomposition
are proposed to address this issue. Firstly, for basis decomposition, each rela-
tion weight W(k)

r is defined as follows:

W(k)
r =

B∑
b=1

a
(k)
rb V(k)

b , (35)

where V(k)
b ∈ Rd×d is the basis and a(k)

rb is the associated coefficients. This
strategy actually regards the relation matrices as the linear combination of
shared basis, which can be seen as a form of weight sharing between different
relations.

In the basis-diagonal decomposition, each W(k)
r is defined through the

direct sum over a set of low-dimensional matrices as

W(k)
r =

B⊕
b=1

Q(k)
br , (36)

where Q(k)
br ∈ Rd/B×d/B is the low-dimensional matrix. Thereby, the W(k)

r

is represented by a set of sub matrices as diag(Q(k)
1r ,Q

(k)
2r , ...,Q

(k)
Br). This

strategy can be seen as a matrix sparsity constraint. It holds the hypothesis
that the latent features can be represented by sets of variables that are more
tightly coupled within groups than across groups.

There are also some other GCN-based multi-relational graph neural net-
works for different purposes. For example, Directed-GCN (Marcheggiani and
Titov, 2017) is developed to exploit the syntactic graph, which has massive and
unbalanced relations. The basic idea of incorporating edge-type information
is similar to the R-GCN (Schlichtkrull et al., 2018), but they solve the over-
parameterization issue by sharing projection matrix weights for all edges with
the same directions but only keeping the relation-specific biases. The other
example is weighted-GCN (Shang et al., 2019), which adopt relation-specific

46

transformation to learn relational information. The weighted-GCN learns the
weight score for each relation type end-to-end and inject it into the GCN frame-
work. In this way, the weighted-GCN is capable of controlling how much
information each type contributes to the aggregation procedure. As a combi-
nation model, the Comp-GCN (Vashishth et al., 2019) generalizes several of
the existing multi-relational GCN methods (i.e., R-GCN (Schlichtkrull et al.,
2018), Weighted-GCN (Shang et al., 2019) and Directed-GCN (Marcheggiani
and Titov, 2017)) and jointly learn the nodes and relations representation.

R-GGNN The relational GGNN (Beck et al., 2018a) is originally developed
for the graph-to-sequence problem. It is capable of capturing long-distance
relations. Similarly to R-GCN, R-GGNN uses relation-specific weights to cap-
ture relation-specific correlations between nodes better. Thus, the propagation
process of R-GGNN can be summarized as

r(k)
i = σ(

∑
vj∈N(vi)

1
cvi,r

Wr
ϕ(ei,j)h

(k−1)
j + br

ϕ(ei,j)),

z(k)
i = σ(

∑
vj∈N(vi)

1
cvi,z

Wz
ϕ(ei,j)h

(k−1)
j + bz

ϕ(ei,j)),

h̃
(k)
i = ρ(

∑
vj∈N(vi)

1
cvi

Wϕ(ei,j)(r
(k)
j ⊙ h(k−1)

i) + bϕ(ei,j)),

h(k)
i = (1 − z(k)

i) ⊙ h(k−1)
i + z(k)

i ⊙ h̃
(k)
i ,

(37)

where Wr/z/·
ϕ(ei,j) ∈ Rd×d,br/z/·

ϕ(ei,j) are trainable relation-specific parameters,
σ(·) is the sigmoid function, cvi,r/z/· = |N(vi)|, and ρ(·) is the non-linear
activation function such as tanh and ReLU.

R-GAT Wang et al. (2020b) and Wang et al. (2020h) propose to extend the
classic GAT to fit the multi-relational graphs. In this section, we will discuss
two R-GAT variants. Intuitively, neighbor nodes with different relations should
have different influences.

Wang et al. (2020b) propose to extend the homogeneous GAT with addi-
tional relational heads. Technically, they propose the relational node represen-
tation as

h(k),m
i,rel =

∑
vj∈N(vi)

β
(k),m
ij W(k),mh(k−1)

j (38)

0.5. Graph Representation Learning for NLP 47

where m ∈ [1,M] is the m−th head and β(k),m
ij is the corresponding attention

score for relation head m, which is calculated as

s
(k),m
ij = f(ei,j),

β
(k),m
ij = softmaxj(s(k),m

ij),
(39)

where s(k),m
ij is the similarity between node vi and vj , and f(·) : Rdk → R

is the multi-layer transformation (MLP) with non-linearity. The relational
representation of node vi is the concatenation with linear transformation of M
heads’ results as:

h(k)
i,rel = g(||Mm=1h(k),m

i,rel), (40)

where || denotes the vector concatenation operation and g(·) : Rm×dk → Rdk

is the liner projection. Thus, the final node representation is the combination
of h(k)

i,rel and h(k)
i,att as follows:

h(k)
i = σ(W(k)(h(k)

i,rel||h
(k)
i,att) + b(k)), (41)

where W(k) ∈ Rd×d,b(k) ∈ Rd are trainable parameters, σ(·) is the ReLU
activation function.

Unlike the work by Wang et al. (2020b), which learn and fuse the relation-
specific node embedding regarding each type of edges, Wang et al. (2020h)
develops a relation-aware attention mechanism to calculate the attention score
α

(k),m
ij as

α
(k),m
ij = softmaxj(s(k),m

ij),

s
(k),m
ij = σ(f (k),m([W(k),mh(k−1)

i ; W(k),mh(k−1)
j ; e(k−1)

i,j])),
(42)

where W(k),m ∈ Rd×d is the learnable matrix, and f(·)(k),m : R3×d → R is
the single linear projection layer. They learn a global representation for each
relation type r = ϕ(ei,j) ∈ R. Technically, for all edges with type r ∈ R, two
node sets Sr and Tr. Sr are collected regarding the source and target node set
of relation r, respectively. Thus the edge type embedding tr can be calculated
by:

er = |
∑

o∈Sr
Who

|Sr|
−

∑
o∈Tr

Who

|Tr|
|. (43)

Thus the edge representation is the absolute difference between mean vectors
of source and target nodes connected by edges whose type are r.

48

Gating Mechanism The multi-relational graph neural networks also face
the over-smoothing problem when stacking several layers to exploit implicit
correlations between distant neighbors (i.e., not directly connected) (Tu et al.,
2019a). To solve this, the gating mechanism, which combines the nodes’ input
features and aggregated features by gates, is introduced to the multi-relational
graph neural network (Tang et al., 2020c; De Cao et al., 2018; Tu et al., 2019a;
Cao et al., 2019c). Intuitively, the gating mechanism can be regarded as a
trade-off between the original signals and the learned information. It regulates
how much of the update message that are propagated to the next step, thus
preventing the model from thoroughly overwriting the past information. Here
we introduce the gating mechanism by taking the classic R-GCN (Schlichtkrull
et al., 2018) as an example, which actually can be extended to arbitrary
variants.

We denote the representation before activation σ(·) as

u(k)
i = f (k)(h(k−1)

i), (44)

where f denotes to the aggregation function. Ultimately, the final representa-
tion of node i’s representation is a gated combination of the previous embed-
ding hk

i and GNN output representation σ(uk
i) as:

h(k)
i = σ(u(k)

i) ⊙ g(k)
i + h(k−1)

i ⊙ (1 − g(k−1)
i) (45)

where gk
i is the gating vectors, and σ(·) is often the tanh(·) function. The

gating vectors are calculated by both the inputs and outputs as follows:

g
(k)
i = σ(f (k)([u(k)

i ,h(k−1)
i])) (46)

where σ is the sigmoid activation function, and f (k)(·) : R2d → R is the linear
transformation. We repeat calculating g(k)

i for d times to get the gating vector
g(k)

i .

Graph Transformer

The transformer architecture (Vaswani et al., 2017) has achieved great success
in NLP fields. Roughly speaking, the transformer’s self-attention mechanism is
a special procedure of fully connected implicit graph learning, as we discussed
in sec. 0.4.2, thus bridging the concept of GNN and transformer. However,

0.5. Graph Representation Learning for NLP 49

the traditional transformer fails to leverage structure information. Inspired
by GAT (Velickovic et al., 2018), which combines the message passing with
attention mechanism, much literature incorporates structured information to
the transformer (we name it as graph transformer) by developing structure-
aware self-attention mechanism (Yao et al., 2020; Levi, 1942; Xiao et al.,
2019; Zhu et al., 2019b; Cai and Lam, 2020b; Wang et al., 2020f). In this
section, we will discuss the techniques of structure-aware self-attention for
the multi-relational graph.

As a preliminary knowledge, here we give a brief review of self-attention.
To make it clear, we omit the multi-head mechanism and only present the
self-attention function. Formally, we denote the input of self-attention as
Q = {q1,q2, ...,qm} ∈ Rm×dq

,K = {k1,k2, ...,kn} ∈ Rn×dk
,V =

{v1,v2, ...,vn} ∈ Rn×dv
. Then the output representation zi is calculated

as

zi = Attention(qi,K,V) =
n∑

j=1
αi,jWvvj (47)

αi,j = softmaxj(ui,j) (48)

ui,j = (Wqqi)T (Wkkj)√
d

(49)

where Wq ∈ Rd×dq
,Wk ∈ Rd×dk

,Wv ∈ Rd×dv
are trainable parameters,

and d is the model dimension. Note that for graph transformer, the query, key
and value all refer to the nodes’ embedding:, namely, qi = ki = vi = hi.
Thus, we will only use hi to represent query, key and value considering
simplification in the following contents.

There are various graph transformers for relation graphs that incorporate
the structure knowledge, which can be categorized into two classes according
to the self-attention function. One class is the R-GAT-based methods which
adopt relational GAT-like feature aggregation. Another class reserves the fully
connected graph while incorporating the structure-aware relation information
to the self-attention function.

R-GAT Based Graph Transformer. The GAT-based graph transformer (Yao
et al., 2020) adopts the GAT-like feature aggregation, which leverages the
graph connectivity inductive bias. Technically, they first aggregate neighbors

50

with type-specific aggregation step and then fuse them through feed-forward
layer as follows:

zr,(k)
i =

∑
vj∈Nr(vi)

αk
i,jWv,(k)h(k−1)

j , r ∈ E

h(k)
i = FFN(k)(WO,(k)[zR1,(k)

i , ..., zRq ,(k)
i]),

(50)

where FFN(k)(·) denotes the feed-forward layer in transformer (Vaswani et al.,
2017), and αi,j denotes the dot-product score in eq. 49.

To incorporate the bi-directional information, Wang et al. (2020f) learns
forward and backward aggregation representation in graph transformer. Specif-
ically, given the backward and forward features (i.e., hi,⊢ and hi,⊣) for node
vi, the backward aggregated feature z(k)

i,⊣ for node vi is formulated by:

z(k)
i,⊣ =

∑
vj∈N⊣(vi)

αi,jWv,(k)a(k)
i,j ,

a(k)
i,j = f (k)([hi,⊢, ei,j ; hj,⊣]),

(51)

where f (k)(·) : R3×d→Rd
is the linear transformation, and αi,j is the soft-

max score of incoming neighbors’ dot-production results ui,j which can be
formulated by:

ui,j =
(Wq,(k)hi,⊣)T (Wk,(k)a(k)

i,j)
√
d

. (52)

Then they adopt the gating mechanism to fuse bidirectional aggregated features
to get the packaged node representation:

g(k)
i = σ(f ′k([z(k)

i,⊢ ; z(k)
i,⊣])),

p(k)
i = g(k)

i ⊙ z(k)
i,⊢ + (1 − g(k)

i) ⊙ z(k)
i,⊣

(53)

where f ′(·) : R2×d → Rd, and σ(·) is the sigmoid activation function. They
calculate the the forward and backward node representation based on the
packaged representation, respectively:

[o(k)
i,⊢ ,o

(k)
i,⊣] = FFN(k)(p(k)

i),

h(k)
i,⊢ = LayerNorm(k)(o(k)

i,⊢ + h(k−1)
i,⊢),

h(k)
i,⊣ = LayerNorm(k)(o(k)

i,⊣ + h(k−1)
i,⊣),

(54)

0.5. Graph Representation Learning for NLP 51

where FFN(·) : Rd → R2×d is the feed-forward function, and LayerNorm(·)
is the layer normalization (Ba et al., 2016). The final node representation is
the concatenation of the last layer K’s bidirectional representations:

h(K)
i = f ′′K([h(K)

i,⊢ ,h(K)
i,⊣]), (55)

where f ′′(K)(·) : R2×d → Rd is the linear transformation.

Structure-aware Self-attention Based Graph Transformer. Un-
like the R-GAT-based graph transformer, which purely relies on the given
graph structure as connectivity, the structure-aware self-attention-based graph
transformer reserves the original self-attention architecture, allowing non-
neighbor nodes’ communication. We will firstly discuss the structure-aware
self-attention mechanism and then present its unique edge embedding repre-
sentation.

Shaw et al. (2018) firstly attempts to model the relative relations between
words (nodes) in the neural machine translation task. Technically, they consider
the relation embedding when calculating node-wise similarity in eq. 49 as
follows:

u
(k)
i,j =

(Wq,(k)h(k−1)
i)T (Wk,(k)h(k−1)

j) + (Wq,(k)h(k−1)
i)T ei,j√

d
. (56)

Motivated by Shaw et al. (2018), Xiao et al. (2019) and Zhu et al. (2019b)
propose to extend the conventional self-attention architecture to explicitly
encode the relational embedding between nodes pairs in the latent space as

u
(k)
i,j =

(Wq,(k)h(k−1)
i)T (Wk,(k)h(k−1)

j + Wr,(k)ei,j)
√
d

,

h(k)
i =

n∑
j=1

αk
i,j(Wv,(k)h(k−1)

j + Wf,(k)ei,j).
(57)

To adopt the bidirectional relations, Cai and Lam (2020b) extends the
traditional self-attention as follows:

u
(k)
i,j =

[Wq,(k)(h(k−1)
i + ei,j)]T [Wk,(k)(h(k−1)

j + ej,i)]√
d

. (58)

Given the learnt attention for each relation, edge embedding representation
is the next critical step for incorporating the structure-information. Shaw et al.

52

(2018) simply learns the relative position encoding w.r.t the nodes’ absolute
positions. Technically, they employ 2K+1 latent labels ([−K,K]) and project
j − i to one specific label embedding for node pair (vi, vj) to fetch the edge
embedding ei,j . Xiao et al. (2019) adopts the similar idea as Shaw et al. (2018).
They define a relative position embedding table and fetch the edge embedding
by looking up from it.

Zhu et al. (2019b) and Cai and Lam (2020b) learn the edge representation
ei,j by the path from node vi to node vj . For Zhu et al. (2019b), the natural way
is to view the path as a string, which is added to the vocabulary to vectorize
it. Other ways are further proposed to learn from labels’ embedding along
the path, such as 1) taking average, 2) taking sum, 3) encoding them using
self-attention, and 4) encoding them using CNN filters. Cai and Lam (2020b)
propose the shortest path based relation encoder. Concretely, they firstly fetch
the labels’ embedding sequence along the path. Then they employ the bi-
directional GRUs for sequence encoding. The last hidden states of the forward
and backward GRU networks are finally concatenated to represent the relation
embedding ei,j .

0.5.3 Graph Neural Networks for Heterogeneous Graph

In practice, many graphs have various node and edge types, such as knowledge
graph, AMR graph, etc., which are called heterogeneous graphs. Formally,
for a graph G, s.t. |T | > 1 or |R| > 1, it is called heterogeneous graph.
Beside transforming the heterogeneous to relation graphs, as introduced in
the previous subsection, sometimes it is required to fully leverage the type
information for both nodes and edges (Hu et al., 2020c; Fan et al., 2019;
Feng et al., 2020a; Wang et al., 2020a; Linmei et al., 2019; Zhang et al.,
2019b). Thus, in Section. 0.5.3, we first introduce a pre-processing technique
for heterogeneous graph. Then, in Section. 0.5.3 and 0.5.3, we will introduce
two typical graph representation learning methods specially for heterogeneous
graphs.

Levi Graph Transformation

Since most existing GNN methods are only designed for homogeneous con-
ditions and there is a massive computation burden when dealing with lots of
edge types (Beck et al., 2018a) (e.g. an AMR graph may contain more than

0.5. Graph Representation Learning for NLP 53

100 edge types), it is typical to effectively to treat the edges as nodes in the
heterogeneous graphs (Beck et al., 2018a; Xu et al., 2018c; Sun et al., 2019a;
Guo et al., 2019c).

One of the important graph transformation techniques is Levi Graph
Transformation. Technically, for each edge ei,j with edge label ϕ(ei,j), we will
create a new node vei,j . Thus the new graph is denoted as G′(V ′, E ′, T ′,R′),
where the node set is V ′ = V ∪ {vei,j }, the node label set is T ′ = T ∪
{ϕ(e)i,j}. We cut off the direct edge between node vi, vj and the add two
direct edges between: 1) vi, vei,j , and 2) vei,j , vj . After converting all edges
in E , the new graph G′ will be a bipartite graph, s.t. |R′| = 1. An example of
transforming AMR graph to desired levi-graph is illustrated in Fig. 11. The
obtained graph is a simplified heterogeneous levi graph that has a single edge
type but unrestricted node types, which can then be learnt by heterogeneous
GNNs described in Section 0.5.3.

nameperson

describe-01

"Paul"

fighter:ARG2

:ARG1

:ARG0
:name :op1

fighter

describe-01

person

name

"Paul"

:ARG2

:ARG1

:ARG0

:name

:op1

Figure 11: An example for transforming AMR graph to Levi-graph.

Meta-path based Heterogeneous GNN

Meta-path, a composite relation connecting two objects, is a widely used
structure to capture the semantics. Take movie data IMDB for example, there
are three types of nodes, including movie, actor, and director. The meta-path
Movie → Actor → Movie, which covers two movie sets and one actor,
describes the co-actor relations. Thus different relations between nodes in the
heterogeneous graph can be easily revealed by meta-paths.

First, we provide the meta-level (i.e., schema-level) description of a hetero-
geneous graph for better understanding. We follow the setting of heterogeneous

54

information network (HIN) (Sun et al., 2011) and give the concept of Network
Schema. The network schema is a meta template for the heterogeneous graph
G(V, E) with the node type mapping: V → T and edge type mapping: E → R.
We denote it as MG(T ,R). A meta path is a path on the network schema

denoted as Φ = T1
R1→ T2

R2→ ...
Rl→ Tl+1, where Ti ∈ T is the schema’s

node and Ri ∈ R is the corresponding relation node. What’s more, we denote
the meta-path set as {Φ1,Φ2, ...,Φp}. For each node Ti on the meta-path
Φj , we denote it as TΦj

i . Then we combine the network schema with the
concrete heterogeneous graph. For each node vi in the heterogeneous graph
and one meta-path Φj , we define the meta-path-based neighbors as NΦj (vi),
which contains all nodes including itself linked by meta-path Φj . An example
of meta-path based heterogeneous graph is shown in Fig. 12. Conceptually,
the neighbor set can have multi-hop nodes depending on the length of the
meta-path.

a1 d1

m1

a2 d2

m2

m3

actor movie director

a m a

d m d

Heterogeneous graph Meta-paths

Figure 12: An example of meta-path based heterogeneous graph.

Most meta-path-based GNN methods adopt the attention-based aggrega-
tion strategy (Wang et al., 2020a; Fan et al., 2019). Technically, they can be
generally divided into two stages. Firstly, they aggregate the neighborhoods
along each meta-paths, which can be named as “node-level aggregation". After
this, the nodes receive neighbors’ information via different meta-path. Next,
they apply meta-path level attention to learn the semantic impact of different
meta-path. In this way, they can learn the optimal combination of neighbors
connected by multiple meta-paths. In the following, we will discuss two typical

0.5. Graph Representation Learning for NLP 55

heterogeneous GNN models (Wang et al., 2020a; Fan et al., 2019).

HAN (Wang et al., 2019e) Due to the heterogeneity of nodes in graphs,
different nodes have different feature spaces, which brings a big challenge
for GNN to handle various initial node embedding. To tackle this issue, the
type-specific transformation is adopted to project various nodes to a unified
feature space as follows:

h′
i = Wτ(vi)hi. (59)

We overwrite the notation hi to denote the transformed node embedding in
HAN’s discussion.

• Node-level Aggregation. For the node vi and its’ neighbor node set
NΦk

(vi) on the meta-path Φk, the aggregated feature of node vi can be
represented by:

zi,Φk
= σ(

∑
vj∈NΦk

(vi)
αΦk

i,j hj)

αΦk
i,j = softmaxj(uΦk

i,j)

uΦk
i,j = Attention(hi,hj ; Φk) = σ(W[hi,hj]),

(60)

where W ∈ R1×2d is the trainable parameter. To make the training
process more stable, they further extend the attention by the multi-head
mechanism. The final representation of zi,Φj is the concatenation of L
heads’ results. Given p meta-paths, we can obtain the aggregated embed-
ding via the previous nodel-level aggregation step as {ZΦ1 , ...,ZΦp},
where ZΦj is the collection of all nodes’ representation for meta-path
Φj .

• Meta-path Level Aggregation. Generally, different meta-path con-
veys different semantic information. To this end, they aim to learn the
importance of each meta-path as:

(βΦ1 , ..., βΦp) = Meta_Attn(ZΦ1 , ...,ZΦp), (61)

where βΦj denotes the learned importance score for meta-path Φj , and
Meta_Attn() is the attention-based scorer. Technically, for each meta-
path, they first learn the semantic-level importance for each node. Then

56

they average them to get the meta-path level importance. It can be
formulated by:

oΦk
= 1

|V|
∑
vi∈V

qT f(zi,Φk
),

βΦk
= softmaxk(oΦk

),
(62)

where f(·) : Rd → Rd is the MLP with tanh non-linearity.

Finally, we can obtain the final node representation as:

zi =
p∑

k=1
βΦk

zi,Φk
. (63)

MEIRec The MEIRec (Fan et al., 2019) is a heterogeneous GNN-based
recommend system. In the specific recommendation system condition, they
restrict the heterogeneous graph’s type amount and meta-path’s length and pro-
pose a special heterogeneous graph neural network, particularly to fully utilize
rich structure information. Considering that the type-specific transformation
requires huge parameters when the amount of nodes is large, they propose an
efficient unified embedding learning method. For each node, they fetch the
terms in the vocabulary and then average them to get the vector representation.

• Node-level Aggregation. Unlike HAN (Hu et al., 2020c), which collect
all nodes along the meta-path as neighbors, they treat different hop of
neighbors differently. Given the meta-path Φj , they define the neigh-
bors of node vi as NΦj (vi)o, o ∈ [1, 2, ..., O] where o denotes the hop.
They learn the representation recursively. Take (o)−hop neighbors for
example, for each nodes in NΦj (vi)o, they first collect the immediate-
neighbors from (o + 1)-hop neighbors and learn the representation
to obtain (o)-hop representation. Then they repeat this procedure to
obtain (o − 1)-hop nodes’ representation. Finally, vi’s representation
for meta-path Φj is generated. Formally, for vk ∈ NΦj (vi)o, they de-
fine its’ immediate neighbor set as NΦj (vk) ∈ NΦj (vi)o+1. Node vj’s
representation zk,Φj

is formulated as:

zk,Φj
= g({zl,Φj

, vl ∈ NΦj (vk)}), (64)

where g(·) is the aggregation function. In MEIRec, it can be the average
function, LSTM function, or the CNN function depend on the nodes’

0.5. Graph Representation Learning for NLP 57

type. Besides, the last hop ((O)-hop)’s nodes are represented by initial
node embedding.

• Meta-path Level Aggregation. Given p meta-path with the starting
nodes vi, we can obtain p aggregated embedding by the previous step.
Then we adopt a similar procedure as node-level aggregation as follows:

zi = g({zi,Φj , j ∈ [1, ..., p]}), (65)

where g(·) is the aggregation function, as we discussed before.

R-GNN based Heterogeneous GNN

Although the meta-path is an effective tool to organize the heterogeneous
graph, it requires additional domain expert knowledge. To this end, most re-
searchers adopt a similar idea from R-GNN by using type-specific aggregation.
For clarity, we name these methods as R-GNN based heterogeneous GNN and
introduce several typical variants of this category in the following.

HGAT HGAT (Linmei et al., 2019) is proposed for encoding heterogeneous
graph which contains various node types but single edge types. In other
words, the edge only represents connectivity. Intuitively, for a specific node,
different types of neighbors may have different relevance. To fully exploit
diverse structure information, HGAT firstly focuses on global types’ relevance
learning (type-level learning) and then learns the representation for specific
nodes (node-level learning).

• Type-level learning. Technically, for a specific node vi and its’ neigh-
bors N(vi), HGAT get the type-specific neighbor representation as:

z(k)
t =

∑
vj∈Nt(vi)

h(k−1)
j , t ∈ T . (66)

Note that we overwrite Nt(vi) which denotes the neighbors with node
type t. Then they calculate the relevance of each type by attention
mechanism:

st = σ(qT [h(k−1)
i , z(k)

t]),

αt = exp(st)∑
t′∈T exp(st′) ,

(67)

58

where q is the trainable vector.

• Node-level learning Secondly, they apply R-GCN (Schlichtkrull et al.,
2018) like aggregation procedure for a different type of nodes. Formally,
for the node vi and the type relevance scores {αt}, t ∈ T , HGAT
calculate each neighbors’ attention score as follows:

bi,j = σ(qT
1 ατ(vj)[h

(k−1)
i ,h(k−1)

j]),

βi,j = exp(bi,j)∑
vm∈N(vi) exp(bi,m) ,

(68)

where q1 is the trainable vector. Finally, HGAT applies layer-wise het-
erogeneous GCN to learn the node representation, which is formulated
as:

h(k)
i = σ(

∑
t∈T

∑
vj∈Nt(vi)

W(k)
t h(k−1)

j). (69)

MHGRN MHGRN (Feng et al., 2020a) is an extension of R-GCN, which can
leverage multi-hop information directly on heterogeneous graphs. Generally, it
borrows the idea of relation path (e.g., meta-path) to model the relation of two
not k-hop connected nodes and extend the existing R-GNN to the path-based
heterogeneous graph representation learning paradigm. The K-hop relation
path between node vi, vj is denoted as:

Φk = {(vi, ei,1, ..., ek−1,j , vj)|(vi, ei,1, v1), ..., (vk−1, ek−1,j) ∈ E}. (70)

Note that the heterogeneous graph may contain more than one k-hop relation
path.

• k-hop feature aggregation. First, to make the GNN aware of the node
type, they project the nodes’ initial feature to the unified embedding
space by type-specific linear transformation (the same as eq. 59). Consid-
ering simplification, we overwrite nodes’ feature notation h to represent
the unified features. Then given node vi, they aim to aggregate k-hop
(k ∈ [1,K]) neighbors’ feature as follows:

zΦk
i =

∑
(vj ,ej,1,...,ek−1,i,vi)∈Φk

α(vj , ej,1, ..., ek−1,i, vi)∑
(vj ,...,vi)∈Φk

α(vj , ..., vi)

l=K∏
l=1

o=K∏
o=1

Wl
ro

hj ,

(1 ≤ k ≤ K)
(71)

0.5. Graph Representation Learning for NLP 59

where Wl
ro
, 1 ≤ l ≤ K, 1 ≤ o ≤ K is the learnable matrix, ro denotes

o−th hop’s edge, α(j, v1, ..., vk, vi) is the attention score among all
k-hop paths between node vj and vi. We use zi to denote the learned
embedding for node vi.

• Fusing different relation paths. Next, they fuse relation paths with
different length via attention mechanism:

z′
i =

K∑
k=1

Attention(q, zΦk
i)zΦk

i , (72)

where q is the task-specific vector (in MHGRN, it is the text-based query
vector), Attention() : Rd → R is the normalized attention score. Note
that we omit the details of α(j, v1, ..., vk, vi) and Attention() since they
are task-specific functions. At last, the final representation of node vi is
the shortcut connection between zi and original feature hi as follows:

zi = σ(W1z′
i + W2hi), (73)

where W1,W2 is the learnable weights.

HGT The HGT (Hu et al., 2020c) is the graph transformer for heterogeneous
graphs, which build meta-relations among nodes on top of the network schema,
as we discuss in the meta-path-based heterogeneous GNN paragraph. Unlike
most previous works that assume the graph structure is static (i.e., time-
independent), they propose a relative temporal encoding strategy to learn the
time dependency.

The meta-relation is a triple based on the network schema. For each edge
ei,j which links node vi and vj , the meta-relation is defined as Φvi,ei,jvj =<
τ(vi), ϕ(ei,j), τ(vj) >. To further represent the time-dependent relations, they
add the timestamps to the start nodes when adding directed edges. Generally,
the GNN is defined as:

h(k)
i = Aggregation(k)

vj∈N(vi)(Attention(k)(vi, ei,j , vj)Message(k)(vi, ei,j , vj)),
(74)

where N(vi) denotes the incoming nodes. We will briefly discuss three ba-
sic meta-relation based operations: attention, message message passing, and
aggregation, as well as the relative temporal encoding strategy.

60

• Attention operation. The Attention(·, ·, ·) operation is the mutual atten-
tion that calculates the weight of two connected nodes grounded by their
meta-relations. Specifically, they employ multi-head attention based on
meta-relations, which is formulated as:

Attn_headi(vi, ei,j , vj) =

f_lineari
τ(vi)(hi)WAT T

ϕ(ei,j)g_lineari
τ(vj)(hj)T

EΦvi,ei,j vj√
d

,

Attention(vi, ei,j , vj) = softmaxvj∈N(vi)(||
H
h=1Attn_headi(vi, ei,j , vj))

(75)

where H is the number of heads, f_lineari
τ(·), g_lineari

τ(·) : Rd/H →
Rd/H are the node-type-specific transformation functions for source
nodes and target nodes respectively, WAT T

ϕ(·) is the edge-type-specific
matrix, and EΦvi,ei,j vj

is the meta-path-specific scalar weight.

• Message passing operation. The Message(·) is the heterogeneous mes-
sage passing function. Similar to the Attention(·, ·, ·) above, they incor-
porate the meta-relations into the message passing process as follows:

msg_headi(vi, ei,j), vj) = m_lineari
τ(vi)(hi)WMSG

ϕ(ei,j),

Message(vi, ei,j , vj) = ||Hh=1msg_headh(vi, ei,j , vj)
(76)

where m_linear(·) : Rd/H → Rd/H is the node-type-specific transfor-
mation, and WMSG

ϕ(·) is the edge-type-specific matrix.

• Aggregation operation. For aggregation operation, since the Attention()
function’s results have been normalized by softmax function, they sim-
ply use average function as Aggregation(·). Finally, they employ meta-
path-specific projection followed by residual connection to learn the
final representation of each nodes as follows:

z(k)
i =

∑
vj∈N(vi)

(Attention(k)(vi, ei,j , vj)Message(k)(vi, ei,j , vj)),

h(k)
i = A_linearΦvi,ei,j vj

(σ(z(k)
i)) + h(k−1),

(77)

where A_linearΦvi,ei,j vj
(·) : Rd → Rd is the meta-relation-specific

projection.

0.6. GNN Based Encoder-Decoder Models 61

• Relative Temporal Encoding To tackle the graph’s time dependency,
they propose the Relative Temporal Encoding mechanism to each node’s
embedding. Technically, they calculate the timestamp difference of
target and source nodes as δi,j = T (vj) − T (vi), where T (·) is the
timestamp of the node. Then they project the time gap to the specific
embedding space. This temporal encoding is added to the source nodes’
representation before GNN encoding.

0.6 GNN Based Encoder-Decoder Models

Encoder-decoder architecture is one of the most widely used machine learning
framework in the NLP field, such as the Sequence-to-Sequence (Seq2Seq)
models(Sutskever et al., 2014; Cho et al., 2014). Given the great power of
GNNs for modeling graph-structured data, very recently, many research ef-
forts have been made to develop GNN-based encoder-decoder frameworks
including Graph-to-Sequence (Song et al., 2018c; Xu et al., 2018b), Graph-
to-Tree (Li et al., 2020a; Zhang et al., 2020b) and Graph-to-Graph (Guo
et al., 2019a; Shi et al., 2020) models, as shown in Figure 13. In this section,
we will first introduce the typical Seq2Seq models, and then discuss various
graph-based encoder-decoder models for various NLP tasks.

0.6.1 Sequence-to-Sequence Models

Sequence-to-Sequence (Seq2Seq) learning (Sutskever et al., 2014; Cho et al.,
2014) is one of the most widely used machine learning paradigms in the NLP
field. In this section, we first give a brief overview of Seq2Seq learning and
introduce some typical Seq2Seq techniques. Then we pinpoint some known
limitations of Seq2Seq learning as well as its solutions, namely, incorporating
more structured encoder-decoder models as alternatives to Seq2Seq models so
as to encode more complex data structures.

Overview

Sequence-to-Sequence (Seq2Seq) models were originally developed by Sutskever
et al. (2014) and Cho et al. (2014) for solving general sequence-to-sequence
problems (e.g., machine translation). The Seq2Seq model is an end-to-end

62

are there ada jobs outside austin

aux

expl

obj
nmod

case

Text input: are there ada jobs outside austin

Parse

Graph encoder

. . .

x0
x1

.

.
xn

x0
x1

.

.
xn

x0
x1

.

.
xn

x0
x1

.

.
xn

. . .

x0
x1

.

.
xn

x0
x1

.

.
xn

x0
x1

.

.
xn

x0
x1

.

.
xn

Pooling

x0
x1

.

.

.

.

.

.
xn

Decoding language (ANS , ada) , job (ANS) , \+ loc
(ANS , austin)

Sequence decoder

language S1 , job S2, \+ loc S3

ANS , ada

ANS

ANS , austin

Graph constructor

S1

S2

S3

Tree decoder

Figure 13: Overall architecture for graph based encoder-decoder model which contains both
the Graph2Seq and Graph2Tree models. Input and output are from JOBS640 dataset (Luke,
2005) . Nodes like S1, S2 stand for sub-tree nodes, which new branches are generated from.

encoder-decoder framework which learns to map a variable-length input se-
quence to a variable-length output sequence. Basically, the idea is to use an
RNN-based encoder to read the input sequence (i.e., one token at a time),
to build up a fixed-dimensional vector representation, and then use an RNN-
based decoder to generate the output sequence (i.e., one token at a time)
conditioned on the encoder output vector. The decoder is essentially a RNN
language model except that it is conditioned on the input sequence. One of the
most common Seq2Seq variants is to apply a Bidirectional LSTM encoder to
encode the input sequence, and apply a LSTM decoder to decode the output
sequence (Sutskever et al., 2014). Other Seq2Seq variants replace LSTM
with Gated Recurrent Units (GRUs) (Cho et al., 2014), Convolutional Neural
Networks (CNNs) (Gehring et al., 2017) or Transformer models (Vaswani
et al., 2017).

Despite the promising achievements in many NLP applications such as
machine translation, the original Seq2Seq models suffer a few issues such
as the information bottleneck of the fixed-dimensional intermediate vector
representation, and the exposure bias of cross-entropy based sequence training.
In the original Seq2Seq architecture, the intermediate vector representation
becomes an information bottleneck because it summarizes the rich information

0.6. GNN Based Encoder-Decoder Models 63

of the input sequence as a fixed-dimensional embedding, which serves as the
only knowledge source for the decoder to generate a high-quality output
sequence. In order to increase the learning capacity of the original Seq2Seq
models, many effective techniques have been proposed.

Approach

The attention mechanism (Bahdanau et al., 2015; Luong et al., 2015) was
developed to learn the soft alignment between the input sequence and output
sequence. Specifically, at each decoding step t, an attention vector indicating
a probability distribution over the source words is computed as

et
i = f(hi, st)

at = softmax(et),
(78)

where f can be arbitrary neural network computing the relatedness between the
decoder state st and encoder hidden state state hi. One common option is to
apply an additive attention mechanism f(hi, st) = vT tanh(Whhi+Wsst+b)
where v, Wh, Ws and b are learnable weights. Given the attention vector at

at the t-th decoding step, the context vector can be computed as a weighted
sum of the encoder hidden states, formulated as

h∗
t =

∑
i

at
ihi, (79)

The computed context vector will be concatenated with the decoder state, and
fed through some neural network for producing a vocabulary distribution.

The copying mechanism (Vinyals et al., 2015; Gu et al., 2016) was intro-
duced to directly copy tokens from the input sequence to the output sequence
in a learnable manner. This can be very helpful in some scenarios where the
output sequence refers to some named entities or out-of-vocabulary tokens in
the input sequence. Specifically, at each decoding step t, a generation prob-
ability will be calculated for deciding whether to generate a token from the
vocabulary or copy a token from the input sequence by sampling from the
attention distribution at. The generation probability can be computed as

pgen = σ(wT
h∗h∗

t + wT
s st + wT

x xt + bptr)), (80)

where wh∗ , ws, wx and bptr are learnable weights, σ is a sigmoid function,
and pgen is a scalar between 0 and 1.

64

The coverage mechanism (Tu et al., 2016) was proposed to encourage the
full utilization of different tokens in the input sequence. This can be useful in
some NLP tasks such as machine translation. Specifically, at each decoding
step t, a coverage vector ct which is the aggregated attention vectors over all
previous decoding steps will be computed as

ct =
t−1∑
t′=0

at′
. (81)

In order to encourage better utilization of those source tokens that have not
received enough attention scores so far, the above coverage vector will be used
as extra input to the aforementioned attention mechanism Eq. (78), that is,

et
i = f(hi, st, c

t
i) (82)

To avoid generating repetitive text, a coverage loss is calculated at each de-
coding step to penalize repeatedly attending to the same locations, formulated
as,

covlosst =
∑

i

min(at
i, c

t
i) (83)

The above coverage loss essentially penalizes the overlap between the attention
vector and the coverage vector, and is bounded to

∑
i a

t
i = 1. It will be

reweighted and added to the overall loss function.
The exposure bias occurs when during the training phase, the ground-truth

token is used as the input (i.e., for better supervision) to the decoder for predict-
ing the next token, while in the inference phase, the decoder’s prediction from
the previous time step is used as the input for next step prediction (due to no
access to the ground-truth token). In order to reduce this gap between training
and inference phases and thus increase the generalization ability of the original
Seq2Seq models, scheduled sampling (Bengio et al., 2015) was proposed to
alleviate this issue by taking as input either the decoder’s prediction from the
previous time step or the ground truth with some probability for next step
prediction, and gradually decreasing the probability of feeding in the ground
truth at each iteration of training. The celebrated Seq2Seq models equipped
with the above effective techniques have achieved great successes in a wide
range of NLP applications such as neural machine translation (Bahdanau et al.,
2015; Luong et al., 2015; Gehring et al., 2017), text summarization (Nallapati
et al., 2016; See et al., 2017; Paulus et al., 2018), text generation (Song et al.,

0.6. GNN Based Encoder-Decoder Models 65

2017), speech recognition (Zhang et al., 2017a), and dialog systems (Serban
et al., 2016; Serban et al., 2017).

Discussions

Seq2Seq models were originally developed to solve sequence-to-sequence
problems, that is, to map a sequential input to a sequential output. However,
many NLP applications naturally admit graph-structured input data such
as dependency graphs (Fu et al., 2019; Chen et al., 2020i), constituency
graphs (Li et al., 2020a; Marcheggiani and Titov, 2020), AMR graphs (Beck
et al., 2018a; Song et al., 2019), IE graphs (Cao et al., 2019c; Huang et
al., 2020b) and knowledge graphs (Nathani et al., 2019a; Wu et al., 2019a).
In comparison with sequential data, graph-structured data is able to encode
rich syntactic or semantic relationships among objects. Moreover, even if the
raw input is originally represented in a sequential form, it can still benefit
from explicitly incorporating rich structural information (e.g., domain-specific
knowledge) to the sequence. The above situations essentially call for an
encoder-decoder framework for learning a graph-to-X mapping where X
can stand for a sequence, tree or even graph. Existing Seq2Seq models face
a significant challenge in learning an accurate mapping from graph to the
appropriate target due to its incapability of modeling complex graph-structured
data.

Various attempts have been made in order to extend Seq2Seq models to
handle Graph-to-Sequence problems where the input is graph-structured data.
A simple and straightforward approach is to directly linearize the structured
graph data into the sequential data (Iyer et al., 2016; Gómez-Bombarelli et
al., 2018; Liu et al., 2017), and apply the Seq2Seq models to the resulting
sequence. However, this kind of approaches suffer significant information loss,
which leads to downgraded performance. The root cause of RNN’s incapability
of modeling complex structured data is because it is a linear chain. In light
of this, some research efforts have been devoted to extend Seq2Seq models.
For instance, Tree2Seq (Eriguchi et al., 2016) extends Seq2Seq models by
adopting Tree-LSTM (Tai et al., 2015) which is a generalization of chain-
structured LSTM to tree-structured network topologies. Set2Seq (Vinyals et
al., 2016) is an extension of Seq2Seq models that goes beyond sequences and
handles the input set using the attention mechanism. Although these Seq2Seq

66

extensions achieve promising results on certain classes of problems, none of
them can model arbitrary graph-structured data in a principled way.

0.6.2 Graph-to-Sequence Models

Overview

To address the aforementioned limitations of Seq2Seq models on encoding rich
and complex data structures, recently, a number of graph-to-sequence encoder-
decoder models for NLP tasks have been proposed (Bastings et al., 2017; Beck
et al., 2018a; Song et al., 2018c; Xu et al., 2018b). This kind of Graph2Seq
models typically adopt a GNN based encoder and a RNN/Transformer based
decoder. Compared to the Seq2Seq paradigm, the Graph2Seq paradigm is
better at capturing the rich structure information of the input text and can be
applied to arbitrary graph-structured data. Graph2Seq models have shown
superior performance in comparison with Seq2Seq models in a wide range
of NLP tasks including neural machine translation (Bastings et al., 2017;
Marcheggiani et al., 2018; Beck et al., 2018a; Song et al., 2019; Xu et al.,
2020c; Yao et al., 2020; Yin et al., 2020; Cai and Lam, 2020c), AMR-to-
text (Beck et al., 2018a; Song et al., 2018c; Damonte and Cohen, 2019;
Ribeiro et al., 2019a; Zhu et al., 2019b; Wang et al., 2020g; Guo et al., 2019c;
Yao et al., 2020; Wang et al., 2020f; Cai and Lam, 2020c; Bai et al., 2020;
Song et al., 2020; Zhao et al., 2020b; Zhang et al., 2020d; Jin and Gildea,
2020), text summarization (Fernandes et al., 2019; Xu et al., 2020a; Huang
et al., 2020b; Zhang et al., 2020c), question generation (Chen et al., 2020i;
Wang et al., 2020d), KG-to-text (Koncel-Kedziorski et al., 2019), SQL-to-
text (Xu et al., 2018a), code summarization (Liu et al., 2021b), and semantic
parsing (Xu et al., 2018c).

Approach

Most proposed Graph2Seq models were designed for tackling particular NLG
tasks. In the followings, we will discuss some common techniques adopted in
a wide rage of Graph2Seq variants, which include both graph-based encoding
techniques and sequential decoding techniques.

0.6. GNN Based Encoder-Decoder Models 67

Graph-based Encoders Early Graph2Seq methods and their follow-up
works (Bastings et al., 2017; Marcheggiani et al., 2018; Damonte and Cohen,
2019; Guo et al., 2019c; Xu et al., 2020a; Xu et al., 2020c; Zhang et al., 2020c;
Zhang et al., 2020d) mainly used some typical GNN variants as the graph en-
coder inclduing GCN, GGNN, GraphSAGE and GAT. Since the edge direction
in a NLP graph often encodes critical information about the semantic relations
between two vertices, it is often extremely helpful to capture the bidirec-
tional information of text (Devlin et al., 2019). In the literature of Graph2Seq
paradigm, some efforts have been made to extend the existing GNN models to
handle directed graphs. The most common strategy is to introduce separate
model parameters for different edge directions (i.e., incoming/outgoing/self-
loop edges) when performing neighborhood aggregation (Marcheggiani et al.,
2018; Song et al., 2018c; Song et al., 2019; Xu et al., 2020c; Yao et al., 2020;
Wang et al., 2020g; Guo et al., 2019c).

Besides the edge direction information, many graphs in NLP applications
are actually multi-relational graphs where the edge type information is very
important for the downstream task. In order to encode edge type informa-
tion, some works (Simonovsky and Komodakis, 2017; Chen et al., 2018b;
Ghosal et al., 2020; Wang et al., 2020b; Schlichtkrull et al., 2018; Teru et al.,
2020) have extended them by having separate model parameters for different
edge types (i.e., similar ideas have been used for encoding edge directions).
However, in many NLP applications (e.g., KG-related tasks), the total number
of edge types is large, hence the above strategy can have severe scalability
issues. To this end, some works (Beck et al., 2018a; Koncel-Kedziorski et al.,
2019; Yao et al., 2020; Ribeiro et al., 2019a; Guo et al., 2019c; Chen et al.,
2020g) proposed to bypass this problem by converting a multi-relational graph
to a Levi graph (Levi, 1942) and then utilize existing GNNs designed for
homogeneous graphs as encoders. Another commonly adopted technique is
to explicitly incorporate edge embeddings into the message passing mecha-
nism (Marcheggiani et al., 2018; Song et al., 2018c; Song et al., 2019; Zhu
et al., 2019b; Wang et al., 2020f; Cai and Lam, 2020c; Wang et al., 2020g;
Song et al., 2020; Liu et al., 2021b; Jin and Gildea, 2020).

Besides the above widely used GNN variants, some Graph2Seq works
also explored other GNN variants such as GRN (Song et al., 2018c; Song
et al., 2019) and GIN (Ribeiro et al., 2019a). Notably, GRN is also capable of
handling multi-relational graphs by explicitly including edge embeddings in

68

the LSTM-style message passing mechanism.

Node & Edge Embeddings Initialization For GNN based approaches,
initialization of nodes and edges is extremely critical. While both CNNs and
RNNs are good at capturing local dependencies among consecutive words in
text, GNNs do well in capturing local dependencies among neighboring nodes
in a graph. Many works on Graph2Seq have shown benefits of initializing
node and/or edge embeddings by applying CNNs (Bastings et al., 2017;
Marcheggiani et al., 2018) or bidirectional RNNs (BiRNNs) (Bastings et al.,
2017; Marcheggiani et al., 2018; Fernandes et al., 2019; Xu et al., 2018b;
Xu et al., 2018a; Koncel-Kedziorski et al., 2019; Cai and Lam, 2020c; Wang
et al., 2020d; Chen et al., 2020i; Liu et al., 2021b) to the word embedding
sequence before applying the GNN based encoder. Some works also explored
to initialize node/edge embeddings with BERT embeddings+BiRNNs (Xu
et al., 2020a; Chen et al., 2020i) or RoBERTa+BiRNNs (Huang et al., 2020b).

Sequential Decoding Techniques Since the main difference between
Seq2Seq and Graph2Seq models is on the encoder side, common decoding
techniques used in Seq2Seq models such as attention mechanism (Bahdanau
et al., 2015; Luong et al., 2015), copying mechanism (Vinyals et al., 2015;
Gu et al., 2016), coverage mechanism (Tu et al., 2016), and scheduled sam-
pling (Bengio et al., 2015) can also be adopted in Graph2Seq models with
potential modifications.

Some efforts have been made to adapt common decoding techniques to the
Graph2Seq paradigm. For example, in order to copy the whole node attribute
containing multi-token sequence from the input graph to the output sequence,
Chen et al. (2020g) extended the token-level copying mechanism to the node-
level copying mechanism. To combine the benefits of both sequential encoder
and graph encoder, Pan et al. (2020) and Sachan et al. (2020) proposed to
fuse their outputs to a single vector before feeding it to a decoder. Huang et al.
(2020b) designed separate attention modules for sequential encoder and graph

0.6. GNN Based Encoder-Decoder Models 69

encoder, respectively.
av

i = attn_v(st,hv
i)

cv =
∑

i

av
i hv

i

as
j = attn_s(st,hs

j , cv)

cs =
∑

i

as
jhs

j

c = cv||cs

(84)

where hv
i and hs

j are the graph encoder outputs and sequential encoder out-
puts, respectively. c is the concatenation of the graph context vector cv and
sequential context vector cs.

In order to tackle the limitations (e.g., exposure bias and discrepancy
between the training and inference phases) of cross-entropy based sequential
training, Chen et al. (2020i) proposed to train the Graph2Seq system by
minimizing a hybrid loss combining both cross-entropy loss and reinforcement
learning (Williams, 1992) loss. While LSTM or GRU based decoders are
the most commonly used decoder in Graph2Seq models, some works also
employed a Transformer based decoder (Koncel-Kedziorski et al., 2019; Zhu
et al., 2019b; Yin et al., 2020; Wang et al., 2020f; Cai and Lam, 2020c; Bai
et al., 2020; Wang et al., 2020g; Song et al., 2020; Zhao et al., 2020b; Jin and
Gildea, 2020).

Discussions

There are some connections and differences between Graph2Seq models
and Transformer-based Seq2Seq models, and many of them have already
been discussed above when we talk about the connections and differences
between GNNs and Transformer models. It is worth noting that there is a
recent trend in combining the benefits of the both paradigms, thus making them
less distinguishable. Many recent works designed various graph transformer
based generation models (as we discussed above) which employ a graph-
based encoder combining both the benefits of GNNs and Transformer, and a
RNN/Transformer based decoder.

Despite the great success of Graph2Seq models, there are some open
challenges. Many of these challenges are essentially the common challenges
of applying GNNs for graph representation learning, including how to better

70

model multi-relational or heterogeneous graphs, how to scale to large-scale
graphs such as knowledge graphs, how to conduct joint graph structure and
representation learning, how to tackle the over-smoothing issue and so on.
In addition, Graph2Seq models also inherit many challenges that Seq2Seq
models have, e.g., how to tackle the limitations of cross-entropy based sequen-
tial training (e.g., exposure bias and discrepancy between the training and
inference phases).

+

21
-

4

5

* *

3

1

2
5

6

3

4

7

8

Left node generation

Right node generation

Left sub-tree embedding

+

21

-4

5

*

*

3

S2S1
1

2

3

Sibling feeding

Begin a new branch decoding

Parent feeding

Sequential decoding

Figure 14: Equation: (1 * 2) + (4 - 3) * 5. Left: a DFS-based tree decoder example, the
number stands for the order of the decoding actions. Right: a BFS based tree decoder example.
Nodes like S1, S2 stand for sub-tree nodes, and once a sub-tree node generated, decoder will
start a new branch for a new descendant decoding process. The number stands for the order of
different branching decoding processes.

0.6.3 Graph-to-Tree Models

Overview

Compared to Graph2Seq model, which considers the structural information in
the input side, many NLP tasks also contain outputs represented in a complex
structured, such as trees, which are also rich in structural information at the
output side, e.g., syntactic parsing(Ji et al., 2019)(Yang and Deng, 2020),
semantic parsing(Li et al., 2020a)(Xu et al., 2018c), math word problem
solving(Li et al., 2020a)(Zhang et al., 2020b). It is a natural choice for us
to consider the structural information of these outputs. To this end, some
Graph2Tree models are proposed to incorporate the structural information

0.6. GNN Based Encoder-Decoder Models 71

in both the input and output side, which make the information flow in the
encoding-decoding process more complete.

Approach

To illustrate how the Graph2Tree model works, we will introduce how dif-
ferent components of the Graph2Tree model operate here, including: graph
construction, graph encoder, attention mechanism, and tree decoder.

Graph construction The graph construction module, which is usually
highly related to specific tasks, could be divided into two categories: one with
auxiliary information and one without auxiliary information. For the former,
Li et al. (2020a) use syntactic graph in both semantic parsing and math word
problem solving tasks, which consists of the original sentence and the syntactic
pasing tree (dependency and constituency tree). And the input graph in (Yin
et al., 2018) considers the graph composed of the abstract syntax tree (AST)
of a fragment of source code. For the latter, the input can usually form a task
graph itself without auxiliary information. For example, Zhang et al. (2020b)
employ the relationship between different numbers in the math word problem
in the graph construction module.

Graph encoder Graph encoder is used for embedding the input graph into
the latent representation. To implementing the graph encoder module, several
graph2tree models use relatively simple GNN models, such as GCN(Kipf
and Welling, 2016), GGNN(Li et al., 2015), and GraphSAGE(Hamilton et al.,
2017a). For (Li et al., 2020a), it uses a bidirectional variant of the GraphSage
model, and Zhang et al. (2020b) exploit the GCN model before a transformer
layer. And Yin et al. (2018) simply adopt the GGNN model as its neural
encoder.

Attention The attention module is a key component in an encoder-decoder
framework, which carry the important information for bridging the input and
output semantics. In the graph2tree model, the input graph often contains
different types of nodes(Li et al., 2020a)(Zhang et al., 2020b), while the
traditional attention module can not distinguish between these nodes. In (Li
et al., 2020a), the author uses the separate attention module to calculate the

72

attention vector for different nodes in the input graph where some nodes is from
the original sentence, and others are composed of the nodes in parsing trees
generated by the external parser. It has been validated that distinguishing these
two types of nodes could facilitate better learning process than the original
attention module. This idea is similar to the application of Tree2Seq(Eriguchi
et al., 2016) attention module in machine translation.

Specifically in (Li et al., 2020a), the decoder generates the tree structure
by representing some branching nodes as non-terminal nodes, i.e., node S1 in
Figure 14. Once these nodes generated, the decoder will start a new sequential
decoding process. The decoder hidden state st at time step t is calculated a

st = fdecoder(yt−1, st−1; spar; ssib), (85)

where the spar, ssib stand for the parent node hidden state and sibling node
hidden state as illustrated in Figure 14. After the current hidden state generated,
the output module including attention layer is calculated as follows:

αt(v) = exp(score(zv, st))
exp(

∑V1
k=1 score(zk, st))

,∀v ∈ V1 (86)

βt(v) = exp(score(zv, st))
exp(

∑V2
k=1 score(zk, st))

,∀v ∈ V2 (87)

cv1 =
∑

αt(v)zv, ∀v ∈ V1 (88)

cv2 =
∑

βt(v)zv, ∀v ∈ V2 (89)

where zv denotes to the learned node embedding for node v, V1 denotes to
the node set including all words from original sentences, and V2 denotes to
another node set including all other nodes. We then concatenate the context
vector cv1 , context vector cv2 and decoder hidden state st to compute the final
attention hidden state at this time step as:

s̃t = tanh(Wc · [cv1 ; cv2 ; st] + bc), (90)

whereWc and bc are learnable parameters. The final context vector s̃t is further
fed to the output layer which is a softmax function after a feed-forward layer.

0.6. GNN Based Encoder-Decoder Models 73

Tree decoder The output of some applications (i.e., semantic parsing,
code generation, and math word problem) contain structural information,
for example, the output in math word problem is a mathematical equation,
which can be expressed naturally by the data structure of the tree. To generate
these kinds of outputs, tree decoders are widely used in these tasks. Tree
decoders can be divided into two main parts as shown in Figure 14, namely,
dfs (depth first search) based tree decoder, and bfs (breadth first search) based
tree decoder.

For bfs-based decoders(Li et al., 2020a; Dong and Lapata, 2016; Alvarez-
Melis and Jaakkola, 2016), the main idea is to represent all the sub-trees in the
tree as non-terminal nodes, and then use sequence decoding to generate inter-
mediate results. If the results contains non-terminals, then we start branching
(begin a new decoding process) with this node as the new root node, until the
entire tree is expanded.

For dfs-based decoders(Zhang et al., 2020b; Yin et al., 2018), they regards
the entire tree generation process as a sequence of actions. For example, in the
generation of a binary tree (mathematical equation) in (Zhang et al., 2020b),
the root node is generated in priority at each step, following by the generation
of the left child node. After all the left child nodes are generated, a bottom-up
manner is adopted to begin the generation of the right child nodes.

In addition, the tree decoder is constantly evolving, and some techniques
are proposed to collect more information during the decoding process or
leverage the information from the input or output, such as parent feeding(Dong
and Lapata, 2016), sibling feeding(Li et al., 2020a), sub-tree copy(Yin et al.,
2018), tree based re-ranking(Do and Rehbein, 2020) and other techniques. At
the same time, the wide application of the transformer model also brings about
many transformer based tree decoders(Sun et al., 2020c)(Li et al., 2020c),
which proves the wide application of tree decoder and Graph2tree model.

0.6.4 Graph-to-Graph Models

The graph-to-graph models are typically utilized for solving graph transforma-
tion problem as a graph encoder-decoder model. The graph encoder generates
the latent representation of each node in the graph or generate one graph-level
latent representation for the whole graph via the GNNs. The graph decoder
then generates the output target graphs based on the node-level or graph-level

74

latent representations from the encoder. In this section, we first introduce
graph-to-graph transformation problem and the typical NLP applications that
can be formalized as graph-to-graph transformation problems. Then, we in-
troduce the specific techniques for a Graph-to-graph model for information
extraction.

Overview

Graph-to-graph transformation Graph-to-graph models aims to deal
with the problem of deep graph transformation (Guo et al., 2018). The goal
of graph transformation is to transform an input graph in the source domain
to the corresponding output graphs in the target domain via deep learning.
Emerging as a new while important problem, deep graph transformation has
multiple applications in many areas, such as molecule optimization (Shi et al.,
2020; Zhou et al., 2020a; Do et al., 2019) and malware confinement in cyber
security (Guo et al., 2019a). Considering the entities that are being transformed
during the translation process, there are three categories of sub-problems: node
transformation, edge transformation, and node-edge-co-transformation. For
node transformation, only the node set or nodes’ attributes in the input graph
can change during the transformation process. For edge transformation, only
the graph topology or edge’ attributes in the input graph can change during
the transformation process. While for node-edge-co-transformation, both the
attributes of nodes and edges can change.

Graph-to-Graph for NLP Since the natural language or information
knowledge graphs can be naturally formalized as graphs with a set of nodes
and their relationships, many generation tasks in the domain of NLP can be
formalized as a graph transformation problem, which can further be solved by
the graph-to-graph models. In this way, the semantic structural information of
both the input and output sentences can be fully utilized and captured. Here,
two important NLP tasks (i.e., information extraction and semantic parsing),
which can be formalized as the graph-to-graph problems, are introduced as
follows.

Graph Transformation for Information Extraction. Information extrac-
tion is to extract the structured information from a text, which usually consists
of name entity recognition, relation extraction and co-reference linking. The

0.6. GNN Based Encoder-Decoder Models 75

problem of information extraction can be formalized as a graph transformation
problem, where the input is the dependency or constituency graph of a text
and the output is the information graph. In input dependency or constituency
graph, each node represents a word token and each edge represent the depen-
dency relationship between two nodes. In output information graph, each node
represents a name entity and each edge represents either the semantic relation
or the co-reference link between two entities. In this way, the information
extraction is about generating the output information graph given the input
dependency or constituency graph.

Graph Transformation for Semantic Parsing. The task of semantic
parsing is about mapping natural language to machine interpretable meaning
representations, which in turn can be expressed in many different formalisms,
including lambda calculus, dependency-based compositional semantics, frame
semantics, abstract meaning representations (AMR), minimal recursion se-
mantics, and discourse representation theory (Fancellu et al., 2019). Explicitly
or implicitly, a representation in any of these formalisms can be expressed as a
directed acyclic graph (DAG). Thus, semantic parsing can also be formalized
as a graph transformation problem, where the input is the dependency or
constituency graph and the output is the directed acyclic graph for semantics.
For example, the semantic formalism for AMR can be encoded as a rooted,
directed, acyclic graph, where nodes represent concepts, and labeled directed
edges represent the relationships between them (Flanigan et al., 2014; Fu et al.,
2021).

Sequence-to-graph transformation can be regarded as a special case of
the graph-to-graph, where the input sequence is a line-graph. Sequence-to-
graph models are popularly utilized for AMR parsing tasks, where the goal
is to learning the mapping from a sentence to its AMR graph (Zhang et al.,
2019e). To generate the AMR tree with indexed node, the approach to parsing
is formalized as a two-stage process: node prediction and edge prediction. The
whole process is implemented by an pointer-network, where the encoder is a
multi-layer bi-direction-RNN and the nodes in the target graphs are predicted
in sequence. After this, the edges among each pair of nodes are predicted
based on the learnt embedding of the ending nodes.

76

Approach

In this subsection, we introduce an example graph-to-graph model in deal-
ing with the task of information extraction by describing its challenges and
methodologies.

Challenges for Graph-to-Graph IE. There are three main challenges in
solving the graph-to-graph IE problem: (1) Different resolution between the
input and output graphs. The nodes in the input dependency graph represent
word tokens, while the nodes in the output information graph represent name
entities; (2) Difficult to involve both the sentence-level and word-level. To
learn the word embedding in the graph encoder, it is important to consider
both the word interactions in a sentence and the sentence interactions in a text;
and (3) Difficult to model the dependency between entity relations and co-
reference links in the graph decoder. The generation process of entity relation
and co-reference links are dependent on each other. For example, if words
“Tom” and “He” in two separate sentences have a co-reference link, and “Tom”
and “London” has the relation of “born_In”, then “He” and “London” should
also have the relation of “born_In”.

Methodology. To solve the above mentioned challenges for the graph-
to-graph IE task, here we introduce an end-to-end encoder-decoder based
graph-to-graph transformation model, which transforms the input constructed
graphs of text into the information graphs which contains name entities as well
as co-reference links and relations among entities. The whole model consists
of a hierarchy graph encoder for span embedding and a parallel decoder with
co-reference link and entity relation generation.

First, to construct the initial graphs, the dependency information are for-
malized into a heterogeneous graph which consists of nodes representing word
tokens (i.e., word-level nodes) and nodes representing sentences (i.e., sentence-
level nodes). There are also three types of edges in the graph. One type of
edges represent the dependency relationships between word-level nodes (i.e.,
dependency edges). One type of edges represent the adjacent relationship
between sentence-level nodes (i.e., adjacent edges). The last type of edges
represent the belongingness between the word-level and sentence-level nodes
(i.e., interactive edges).

Second, the constructed heterogeneous graph is inputted into the encoder,
which is based on a hierarchy graph convolution neural network. Specifi-

0.6. GNN Based Encoder-Decoder Models 77

cally, for each layer, the conventional message passing operations are first
conducted along the dependency and adjacent edges to update the embed-
ding of word-level and sentence-level nodes. Then, the conventional message
passing operations are conducted along the interactive edges based on the
newly updated word-level and sentence-level nodes’ embedding. After several
layers of propagation, the embedding of word-evel nodes will contains both
the dependency and sentence-level information.

Third, based on the words’ embedding from the encoder, the name entities
can be first extracted via BIO Tagging (Marquez et al., 2005). Thus, the entity-
level embedding are then constructed by summing all of the embedding of
the words it contains. Given the entity embedding, to model the dependency
between the co-reference links and relations between entities, a parallel graph
decoder (Guo et al., 2018) that involves both co-reference link and entity
relation generation processes is utilized. Specifically, given the entity embed-
ding hi and hj of a pair of name entities vi and vj , the initial generated latent
representation of co-reference link c0

i,j is computed as:

c0
i,j =

∑C

m=1
(σ(hm

i µ̄j) + σ(hm
j ν̄i)), (91)

where σ(hm
i µ̄j) means the deconvolution contribution of node vi to its edge

representations with node vj , which is made by the m-th entry of its node
representations, and µ̄j represents one entry of the deconvolution filter vector
µ̄ ∈ RN×1 that is related to node vj . The initial relation latent representation
e0

i,j between a pair of name entities vi and vj can also be computed in the
same way. C refers to the length of name entity embedding.

Given the initial latent representation of co-reference links and relations,
the co-reference link representation cl

i,j at the l-th layer is computed as follows:

cl
i,j = σ(ϕ̄l−1

j

∑N

k1=1
[cl−1; el−1]l−1

i,k1
xk1) +σ(ψ̄l

i

∑N

k2=1
[cl−1; el−1]l−1

k2,jxk1),
(92)

where ϕ̄l−1
j

∑N
k1=1[cl−1; el−1]l−1

i,k1
xk1 can be interpreted as the decoded con-

tribution of node vi to its edge representations with node vj , and ϕ̄l−1
j refers

to the element of deconvolution filter vector that is related to node vj . The
output of the last “edge” deconvolution layer denotes the probability of the
existence of an edge in the target graph. All the symbols σ refers to the activa-
tion functions. [cl−1; el−1] refers to the concatenation of all the co-reference
and relation representations at (l − 1)-th layer.

78

0.7 Applications

In this chapter, we will discuss a large variety of typical NLP applications
using GNNs, including natural language generation, machine reading compre-
hension, question answering, dialog system, text classification, text matching,
topic modeling, sentiment classification, knowledge graph, information extrac-
tion, semantic and syntactic parsing, reasoning, and semantic role labelling.
We also provide the summary of all the applications with their sub-tasks and
evaluation metrics in Table 3.

0.7.1 Natural Language Generation

Natural language generation (NLG) aims to generate high-quality, coherent
and understandable natural languages given various form of inputs like text,
speech and etc while we only focus on the linguistic form. Modern natural
language generation methods usually take the form of encoder-decoder, which
encodes the input sequences into latent space and predicts a collection of
words based on the the latent representation. Most modern NLG pipelines can
be divided into two steps: Encoding and Decoding, which are processed by
two module: encoder and decoder. In this section, we provide a comprehensive
overview of the auto-regressive graph-based methodologies which exploit
graph structures in encoder in this thriving area covering 1) neural machine
translation, 2) summarization, 3) question generation, 4) structural-data to
text.

Neural Machine Translation

Background and Motivation The classic neural machine translation
(NMT) system aims to map the source language’s sentences into the target
language without changing the semantic meaning. Most prior works (Bah-
danau et al., 2015; Luong et al., 2015) adopt the attention-based sequence-
to-sequence learning diagram, especially the RNN-based language model.
Compared with the traditional machine translation models, these methods
can produce much better performance without specific linguistic knowledge.
However, these methods suffer from the long-dependency problem. With the
development of attention mechanism, fully-attention-based models such as
Transformer (Vaswani et al., 2017), which captures the implicit correlations

0.7. Applications 79

Table 3: Typical NLP applications and relevant works using GNNs

Application Task Evaluation References

NLG

Neural
BLEU

Bastings et al. (2017), Beck et al. (2018b), and Cai and Lam (2020b)
Machine Guo et al. (2019c), Marcheggiani et al. (2018), and Shaw et al. (2018)

Translation Song et al. (2019), Xiao et al. (2019), Xu et al. (2020c), and Yin et al. (2020)

Summarization ROUGE

Xu et al. (2020a), Wang et al. (2019e), and Li et al. (2020b)
Fernandes et al. (2019) and Wang et al. (2020a)
Cui et al. (2020b), Jia et al. (2020), and Zhao et al. (2020a)
Jin et al. (2020a), Yasunaga et al. (2017), and LeClair et al. (2020)

BLEU, METEOR

Bai et al. (2020), Jin and Gildea (2020), and Xu et al. (2018a)
Structural-data Beck et al. (2018b), Cai and Lam (2020a), and Zhu et al. (2019c)

to Text Cai and Lam (2020b), Ribeiro et al. (2019a), and Song et al. (2020)
Wang et al. (2020f), Yao et al. (2018), and Zhang et al. (2020d)

Natural Question BLEU, METEOR, Chen et al. (2020g), Liu et al. (2019b), and Pan et al. (2020)
Generation ROUGE Wang et al. (2020c), Sachan et al. (2020), and Su et al. (2020)

MRC and QA

F1, Exact Match

De Cao et al. (2018), Cao et al. (2019c), and Chen et al. (2020h)
Machine Reading Qiu et al. (2019), Schlichtkrull et al. (2018), and Tang et al. (2020c)
Comprehension Tu et al. (2019a) and Song et al. (2018b)

Fang et al. (2020a) and Zheng and Kordjamshidi (2020)
Knowledge Base

F1, Accuracy
Feng et al. (2020a) and Sorokin and Gurevych (2018b)

Question Answering Santoro et al. (2017) and Yasunaga et al. (2021)
Open-domain

Hits@1, F1 Han et al. (2020), Sun et al. (2019b), and Sun et al. (2018a)
Question Answering

Community
nDCG, Precision Hu et al. (2019b) and Hu et al. (2020b)

Question Answering

Dialog Systems

Dialog State Tracking Accuracy Chen et al. (2018b) and Chen et al. (2020b)
Dialog Response BLEU, METEOR,

Hu et al. (2019e) and Bai et al. (2021)
Generation ROUGE

Next Utterance Selection Recall@K Liu et al. (2021c)

Text Classification Accuracy
Chen et al. (2020f), Defferrard et al. (2016), and Henaff et al. (2015)
Huang et al. (2019), Hu et al. (2020c), and Liu et al. (2020)

Text Matching Accuracy, F1 Chen et al. (2017c) and Liu et al. (2019a)

Topic Modeling Topic Coherence Score
Long et al. (2020) and Yang et al. (2020)
Zhou et al. (2020a) and Zhu et al. (2018)

Sentiment Classification Accuracy, F1

Zhang and Qian (2020) and Pouran Ben Veyseh et al. (2020)
Chen et al. (2020e) and Tang et al. (2020a)
Sun et al. (2019c), Wang et al. (2020b), and Zhang et al. (2019a)
Ghosal et al. (2020), Huang and Carley (2019), and Chen et al. (2020a)

Knowledge Graph

Knowledge

Hits@N

Malaviya et al. (2020), Nathani et al. (2019a), and Teru et al. (2020)
Graph Bansal et al. (2019), Schlichtkrull et al. (2018), and Shang et al. (2019)

Completion Wang et al. (2019a), Wang et al. (2019g), and Zhang et al. (2020g)
Knowledge Cao et al. (2019b), Li et al. (2019), and Sun et al. (2020b)

Graph Wang et al. (2018), Wang et al. (2020h), and Ye et al. (2019)
Alignment Xu et al. (2019a) and Wu et al. (2019a)

Information Extraction

Named Entity

Precision, Recall, F1

Luo and Zhao (2020), Ding et al. (2019b), and Gui et al. (2019)
Recognition Jin et al. (2019) and Sui et al. (2019)

Relation Extraction
Qu et al. (2020), Zeng et al. (2020), and Sahu et al. (2019)
Guo et al. (2019b) and Zhu et al. (2019a)

Joint Learning Models Fu et al. (2019), Luan et al. (2019), and Sun et al. (2019a)

Parsing
Syntax-related

Accuracy
Do and Rehbein (2020), Ji et al. (2019), and Yang and Deng (2020)

Semantics-related
Bai et al. (2020) and Zhou et al. (2020b)
Shao et al. (2020), Bogin et al. (2019a), and Bogin et al. (2019b)

Reasoning

Math Word

Accuracy

Li et al. (2020a), Lee et al. (2020), and Wu et al. (2020b)
Problem Solving Zhang et al. (2020b) and Ferreira and Freitas (2020)
Natural Language

Kapanipathi et al. (2020) and Wang et al. (2019f)
Inference

Commonsense
Zhou et al. (2018a), Lin et al. (2019b), and Lin et al. (2019a)

Reasoning

Semantic Role Labelling
Precision, Recall, Marcheggiani and Titov (2020), Xia et al. (2020), and Zhang et al. (2020a)

F1 Li et al. (2018c), Marcheggiani and Titov (2017), and Fei et al. (2020)

80

by self-attention, have made a breakthrough and achieved a new state-of-art.
Although these works achieve great success, they rarely take the structural
information into account, such as the syntactic structure. Recently, with the
help of powerful GNNs, many researchers further boost the performance by
mining the structural knowledge contained in the unstructured texts.

Methodologies Most GNN-based NMT methods cast the conventional
seq2seq diagram to the Graph2Seq architecture. They firstly convert the input
texts to graph-structured data, and then employ the GNN-based encoder to
exploit the structural information. In this section, we introduce and summa-
rize some representative GNN-related techniques adopted in recent NMT
approaches regarding graph construction and representation learning.

• Graph Construction. Various static graphs have been introduced to the
NMT task to tackle corresponding challenges. Bastings et al. (2017),
Beck et al. (2018b), Cai and Lam (2020b), and Guo et al. (2019c) first
converted the given texts into syntactic dependency graph. Such struc-
ture doesn’t take semantic relations of words into account. Intuitively,
it is beneficial to represent the redundant sentences by high-level se-
mantic structure abstractions. To this end, Marcheggiani et al. (2018)
construct the semantic-role-labeling based dependency graph for the
given texts. What’s more, Beck et al. (2018b) and Song et al. (2019)
construct the AMR graph for the sentences which can cover more se-
mantic correlations. Besides the classic graph types, some specifically
designed graphs (app-driven graphs) are proposed to address the unique
challenges. Although source sentences in NMT are determined, either
word-level or subword-level segmentations have multiple choices to
split a source sequence with different word segments or different sub-
word vocabulary sizes. Such a phenomenon is proposed to affect the
performance of NMT (Xiao et al., 2019). They propose the lattice graph,
which incorporates different segmentation of source sentences. Shaw
et al. (2018) construct the relative position graph to explicitly model
the relative position feature. Yin et al. (2020) build the multi-modal
graph to introduce visual knowledge to NMT, which presents the input
sentences and corresponding images in a unified graph to capture the
semantic correlations better. Despite the single-type static graph, Xu

0.7. Applications 81

et al. (2020c) construct the hybrid graph considering multiple relations
for document-level NMT to address the severe long-dependency issue.
In detail, they construct the graph considering both intra-sentential and
inter-sentential relations. For intra-sentential relations, they link the
words with sequential and dependency relations. For inter-sentential re-
lations, they link the words in different sentences with lexical (repeated
or similar) and coreference correlations.

• Graph Representation Learning. Most of the constructed graphs in
this line are heterogeneous graphs, which contain multiple node or edge
types and can’t be exploited directly by typical GNNs. Thus, researchers
adopt various heterogeneous graph representation techniques. Bastings
et al. (2017) and Marcheggiani et al. (2018) regard the dependency
graphs as multi-relational graphs and apply directed-GCN to learn the
graph representation. Similarly, Beck et al. (2018b) firstly convert the
constructed multi-relational graph to levi-graph and apply relational
GGNN, which employs edge-type-specific parameters to exploit the rich
structure information. Xu et al. (2020c) regard the edge as connectivity
and treat the edge direction as edge types, such as "in", "out", and "self".
Then they apply relational GCN to encode the document graph. Guo
et al. (2019c) convert the heterogeneous graph to levi-graph and adopt
the densely connected GCN to learn the embedding. Song et al. (2019)
propose a special type-aware heterogeneous GGNN to learn the node
embedding and edge representation jointly. Specifically, they first learn
the edge representation by fusing both the source node and edge type’s
embeddings. Then for each node, they aggregate the representation from
its incoming and outgoing neighbors and utilize a RNN based module
to update the representation.

Besides the extension of traditional GNNs, Transformer is further ex-
plored to learn from the structural inputs in NMT. Unlike traditional
Transformer which adopt absolute sinusoidal position embedding to
ensure the self-attention learn the position-specific feature, Shaw et al.
(2018) and Xiao et al. (2019) adopt position-based edge embedding to
capture the position correlations and make the transformer learn from
the graph-based inputs. Cai and Lam (2020b) learn the bidirectional
path-based relation embedding and add it to the node embedding when

82

calculating self-attention. They then find the shortest path from the
given graph for any two nodes and apply bidirectional GRU to further
encode the path to get the relation representation. Yin et al. (2020) apply
graph-transformer-based encoder to learn the multi-modal graph. Firstly,
for text modal’s nodes, they get the initial embedding by summing up
the word embedding and position embedding. As for visual nodes, they
apply a MLP layer to project them to the unified space as text nodes.
Secondly for each modal, they apply multi-head self-attention to learn
the intra-modal representation. Thirdly, they employ GAT-based cross-
modal fusion to learn the cross-modal representation.

• Special Techniques. In order to allow information flow from both
directions, some technqies are designed for incorporating direction
information. For example, Bastings et al. (2017), Marcheggiani et al.
(2018), and Beck et al. (2018b) add the corresponding reverse edge
as an additional edge type "reverse". The self-loops edge type are also
added as type "self". For another example, Guo et al. (2019c) first add
a global node and the edges from this global node to other nodes are
marked with type "global". In addition, they further add bidirectional
sequential links with type "forward" and "backward" between nodes
existing in the input texts.

Benchmarks and Evaluation Common benchmarks for NMT from text
include News Commentary v11, WMT14, WMT16, WMT19 for training,
newstest2013, newstest2015, newstest2016, newsdev2019, newstest2019 for
evaluation and testing. As for multi-modal NMT task, Multi30K dataset (Elliott
et al., 2016) is widely used by previous works. As for evaluation metrics,
BLEU is the a typical metric to evaluate the similarity between the generated
and real output texts.

Summarization

Background and Motivation Automatic summarization is the task of
producing a concise and fluent summary while preserving key information
content and overall meaning (Allahyari et al., 2017). It is a well-noticed but
challenging problem due to the need of searching in overwhelmed textural

0.7. Applications 83

data in real world. Broadly, there are two main classic settings in this task:
1) extractive summarization and 2) abstractive summarization. Extractive
summarization task focus on selecting sub-sentences from the given text to
reduce redundancy, which is formulated as a classification problem. In con-
trast, abstractive summarization follows the neural language generation task.
It normally adopts the encoder-decoder architecture to generate the textual
summary. Compared to the extractive summarization, the abstractive summa-
rization setting is more challenging but more attractive since it can produce
non-existing expressions. Traditional approaches (Gehrmann et al., 2018;
Zhou et al., 2018b; Liu, 2019) simply regard the inputs as sequences and
apply the encoder like LSTM, Transformer, etc. to learn the latent representa-
tion, which fail to utilize the rich structural information implicitly existing in
the natural inputs. Many researchers find that structural knowledge is benefi-
cial to address some troublesome challenges, e.g., long-dependency problem,
and thus propose the GNN-based techniques (Wang et al., 2020a; Fernan-
des et al., 2019) to explicitly leverage the structural information to boost the
performance.

Methodologies Most GNN-based summarization approaches firstly con-
struct the graph to represent the given natural texts. Then they employ GNN-
based encoders to learn the graph representation. After that, for extractive
summarization models, they adopt the classifier to select candidate subsen-
tences to compose the final summary. As for abstractive summarization, they
mostly adopt the language decoder with maximizing the outputs’ likelihood
to generate the summary. In the following, we introduce some representative
GNN-related techniques from the recent summarization methods.

• Graph Construction. Here we introduce the different ways to construct
suitable and effective graph for different types of inputs, including
sign-documents, multi-documents and codes.

Single-document based. Fernandes et al. (2019) construct the hybrid
graph, including sequential and coreference relation. To tackle the issue
such as semantic irrelevance and deviation, Jin et al. (2020b) construct
the semantic dependency graph and cast it as the multi-relational graph
for the given texts. To capture the typical long-dependency in document-
level summarization, Xu et al. (2020a) construct the hybrid graph. They

84

first construct the discourse graph by RST parsing and then add co-
reference edges between co-reference mentions in the document. To
better capture the long-dependency relation in sentence-level and en-
rich the semantic correlations, Wang et al. (2020a) regards both the
sentences and the containing words as nodes and construct a similarity
graph to model the semantic relations. To model the redundant relation
between sentences, Jia et al. (2020) propose to construct the hybrid
heterogeneous graph containing three types of nodes: 1) named entity,
2) word, and 3) sentence as well as four types of edges: 1) sequential,
2) containing, 3) same, and 4) similar. However, the methods above
are mostly focused on the cross-sentence relations and overlook the
inter-sentence, especially the topic information. To this end, Cui et al.
(2020b) and Zhao et al. (2020a) construct the topic graph by introducing
additional topic words to discover the latent topic information. On top
of that, Zhao et al. (2020a) mine the sub-graph of non-topic nodes to
represent the original texts while preserving the topic information.

Multi-document based. Yasunaga et al. (2017) decompose the given
document clusters into sentences and construct the discourse graph by
Personalized Discourse Graph algorithm (PDG). Li et al. (2020b) split
the documents into paragraphs and constructs three individual graphs:
1) similarity graph, 2) discourse graph, and 3) topic graph to investigate
the effectiveness.

Code based. To fully represent the code information in the code summa-
rization task, Fernandes et al. (2019) construct the specific code graph
for the given program clips. They first break up the identifier tokens
(i.e., variables, methods, etc.) into sub-tokens by programming language
heuristics. Then they construct the graph to organize the sub-tokens ac-
cording to sequential positions and lexically usage. LeClair et al. (2020)
propose another way by firstly parsing the given programs into abstract
syntax trees (AST) and then converting them to program graphs.

• Graph Representation Learning

In the literature of summarization tasks, both homogeneous GNNs and
heterogeneous GNNs have been explored to learn the graph represen-
tation. For homogeneous graphs, Li et al. (2020b) apply self-attention-

0.7. Applications 85

based GAT to learn the representation on the fully-connected graph.
Specifically, they introduce Gaussian kernel to mine the edge impor-
tance between nodes from the graph’s topology. Zhao et al. (2020a)
adopt the GAT-based graph transformer, which regards the similarity
learned by self-attention as edge weight. For heterogeneous graphs,
some researchers cast the heterogeneous graphs to homogeneous graphs
by special techniques. For example, some works(LeClair et al., 2020;
Yasunaga et al., 2017; Xu et al., 2020a) ignore both the edges and nodes’
types by treating the edge as connectivity. Cui et al. (2020b) project
the nodes to the unified embedding space to diminish the heterogene-
ity. After that, some classic GNNs are employed such as GCN (Xu
et al., 2020a; LeClair et al., 2020; Yasunaga et al., 2017), GAT (Cui
et al., 2020b). For example, Fernandes et al. (2019) employ the rela-
tional GGNN to learn type-specific relations between nodes. Wang et al.
(2020a) and Jia et al. (2020) firstly split the heterogeneous graph into
two sub-graphs according to nodes’ type (i.e., words graph and sentence
graph) and then apply GAT-based cross-attention on two sub-graphs to
learn the representation iteratively.

• Embedding Initialization The quality of the initial node embedding
plays an important role in the overall performance of GNN-based meth-
ods. For graphs whose nodes are words, most approaches adopt the
pre-trained word embeddings such as BERT (Li et al., 2020b; Xu et al.,
2020a; Cui et al., 2020b), ALBERT (Jia et al., 2020). Besides, since
the topic graph (Cui et al., 2020b) introduces additional topic nodes,
they initialize them by the latent representation of topic modeling. Jin
et al. (2020b) apply Transformer to learn the contextual-level node
embedding. For nodes such as sentence-level nodes, which are com-
posed of words, Yasunaga et al. (2017) adopt the GRU to learn the
sentences’ embedding (i.e., the node embeddings) from the correspond-
ing word sequences. They adopt the last hidden state as the sentences’
representation. Similarly, Wang et al. (2020a) adopt CNN to capture
the fine-grained n-gram feature and then employ Bi-LSTM to get the
sentences’ feature vectors. Jia et al. (2020) apply the average pooling
function to the ALBERT’s encoder outputs to represent the sentence
nodes, while Zhao et al. (2020a) initialize the nodes (utterances) by

86

CNN and the topic words by LDA.

Benchmarks and Evaluation Common benchmarks for automatic sum-
marization from documents include CNN/DailyMail (See et al., 2017), NYT (Sand-
haus, 2008), WikiSum (Liu et al., 2018a), MultiNews (Fabbri et al., 2019). As
for code based summarization, Java (Alon et al., 2018) and Python (Barone and
Sennrich, 2017) are widely used. As for evaluation metrics, BLEU, ROUGE
and human evaluation are commonly used.

Structural-data to Text

Background and Motivation Despite the natural texts, many NLP ap-
plications evolve the data which is represented by explicit graph structure,
such as SQL queries, knowledge graphs, AMR, etc. The task of structural-data
is to generate the natural language from structural-data input. Traditional
works (Pourdamghani et al., 2016; Pourdamghani et al., 2014) apply the
linearization mechanisms which map the structural-data to sequential data
and adopt the Seq2Seq architecture to generate the texts. To fully capture the
rich structure information, recent efforts focus on GNN-based techniques to
handle this task. In the following, we introduce GNN techniques for three
typical cases, namely AMR-to-text generation, SQL-to-text generation and
RDF-to-text generation.

Methodologies Most GNN-based AMR-to-text and SQL-to-text approaches
typically construct domain-specific graphs such as AMR graphs and SQL-
parsing-based graphs to organize the inputs. RDF-to-text generation often uses
the graph structure inherent in the RDF triples. Following that, they apply
Graph2Seq consisting of GNN encoders and sequential decoders to generate
neural language outputs. This section summarizes various graph construction
methods and the techniques employed to exploit the informative graphs.

• Graph Construction. Regarding the AMR-to-text Generation, the input
AMRs can be normally represented as directed heterogeneous graphs
according to the relations (Damonte and Cohen, 2019; Song et al., 2020;
Bai et al., 2020; Zhu et al., 2019b; Zhang et al., 2020d; Yao et al., 2020;
Beck et al., 2018b; Cai and Lam, 2020b; Jin and Gildea, 2020; Ribeiro

0.7. Applications 87

et al., 2019a; Wang et al., 2020g; Wang et al., 2020f; Song et al., 2018c).
To incorporate the conventional GNNs specializing in homogeneous-
graph learning, Damonte and Cohen (2019), Yao et al. (2020), Beck et
al. (2018b), Cai and Lam (2020a), and Ribeiro et al. (2019a) convert the
AMR graphs to levi-graph. In addition, for each edge, they (Damonte
and Cohen, 2019; Beck et al., 2018b; Yao et al., 2020; Cai and Lam,
2020a) add the reverse edges and self-loops to allow information flows
in both directions. Besides the default, reverse, and self-loop edges, Yao
et al. (2020) also introduces fully-connected edges to model indirect
nodes and connected edges, which treat original edges as connectivity
without direction to model connection information. Zhao et al. (2020b)
split the given AMR graph GAMR into two directed sub-graphs: 1)
concept graph Gc, and 2) line graph Gl. They firstly treat the edge as
connectivity to get the concept graph. Then for each edge in GAMR,
they create a node in Gl. Two nodes in Gl are connected if they share the
same nodes in GAMR. The two sub-graphs are connected by original
connections in GAMR. To leverage multi-hop connection information,
they preserve the 1 − K order neighbors in the adjacency matrices.
Regarding the SQL inputs, the SQL queries can be parsed by many SQL
tools1 into many sub-clauses without loss, which naturally contain rich
structure information. Xu et al. (2018a) and Xu et al. (2018b) construct
the directed and homogeneous SQL-graph based on the sub-clauses by
some hand-craft rules. Regarding the RDF triple inputs, Marcheggiani
and Perez-Beltrachini (2018) and Gao et al. (2020) treat the relation in
a triple as an additional node in the graph connecting to the subject and
object entity nodes.

• Graph Representation Learning. Ribeiro et al. (2019a) and Gao
et al. (2020) treat the obtained levi-graphs as directed homogeneous
graphs and learn the representation by bidirectional GNNs. Ribeiro et al.
(2019a) also proposes a bidirectional embedding learning framework
that traverses the directed graphs in the original and the reversal direc-
tion. Xu et al. (2018a) apply classic graph2seq architecture (Xu et al.,
2018b) with bidirectional GraphSage methods to learn the embedding
of SQL graph via two ways, including 1) pooling-based mechanism

1http://www.sqlparser.com.

http://www.sqlparser.com

88

and 2) node-based mechanism, which means add a supernode connect-
ing to other nodes, to investigate the influence of graph embedding.
Some approaches directly employ multi-relational GNN to encode the
obtained multi-relational graphs. For example, Damonte and Cohen
(2019) adopt directed-GCN to exploit the AMR graphs considering both
heterogeneity and parameter-overhead. Beck et al. (2018b) propose
relational GGNN to capture diverse semantic correlations. Song et al.
(2018c) employ a variance of GGNN to exploit the multi-relational
AMR graphs by aggregating the bidirectional node and edge features
and then fusing them via a LSTM network. Zhao et al. (2020b) propose
a heterogeneous GAT to exploit the AMR graphs in different grains.
Firstly, they apply GAT to each sub-graph to learn the bidirectional
representation separately. Then they apply cross-attention to explore
the dependencies between the two sub-graphs. Zhang et al. (2020d)
propose the multi-hop GCN, which dynamically fuses the 1 −K order
neighbors’ features to control the information propagate in a range of
orders. Wang et al. (2020g) apply relational GAT with bidirectional
graph embedding mechanism by incorporating the edge types into the
attention procedure to learn type-specific attention weights.

Transformer architectures are also utilized to encode the AMR or SQL
graphs. Yao et al. (2018) firstly apply GAT-based graph Transformer in
each homogeneous sub-graphs and then concatenate sub-graphs repre-
sentation to feed the feed-forward layer. Some works Zhu et al. (2019b),
Song et al. (2020), Bai et al. (2020), Cai and Lam (2020a), and Jin and
Gildea (2020) adopt the structure-aware graph transformer (Zhu et al.,
2019b; Cai and Lam, 2020b), which injecting the relation embedding
learned by shortest path to the self-attention to involve the structure
features. Specifically, Jin and Gildea (2020) explore various shortest
path algorithms to learn the relation representation of arbitrary two
nodes. Similarly, Wang et al. (2020f) employ the graph Transformer,
which leverages the structure information by incorporating the edge
types into attention-weight learning formulas.

• Special Mechanisms. Damonte and Cohen (2019) apply the Bi-LSTM
encoder following the GNN encoder to further encode the sequential
information. Despite the language generation procedure, to better pre-

0.7. Applications 89

serve the structural information, Zhu et al. (2019b), Bai et al. (2020),
and Wang et al. (2020g) introduce the graph reconstruction on top of
the latent graph representation generated by graph transformer encoder.

Benchmarks and Evaluation Common benchmarks for AMR-to-text
generation task include LDC2015E85, LDC2015E86, LDC2017T10, and
LDC2020T02. As for the SQL-to-text generation task, WikiSQL (Zhong et al.,
2017) and Stackoverflow (Iyer et al., 2016) are widely used by previous works.
The RDF-to-text generation task often uses WebNLG (Gardent et al., 2017)
and New York Times (NYT) (Riedel et al., 2010). As for evaluation metrics,
the AMR-to-text generation task mostly adopts BLEU, Meteor, CHRF++,
and human evaluation including meaning similarity and readability. While
BLEU-4 are widely used for SQL-to-text task. The RDF-to-text generation
task uses BLEU, Meteor and TER.

Natural Question Generation

Background and Motivation The natural question generation (QG) task
aims at generating natural language questions from certain form of data, such
as KG (Kumar et al., 2019; Chen et al., 2020g), tables (Bao et al., 2018),
text (Du et al., 2017; Song et al., 2018a) or images (Li et al., 2018b), where
the generated questions need to be answerable from the input data. Most
prior work (Du et al., 2017; Song et al., 2018a; Kumar et al., 2019) adopts a
Seq2Seq architecture which regards the input data as sequential data without
considering its rich structural information. For instance, when encoding the
input text, most previous approaches (Du et al., 2017; Song et al., 2018a)
typically ignore the hidden structural information associated with a word
sequence such as the dependency parsing tree. Even for the setting of QG
from KG, most approaches (Kumar et al., 2019) typically linearize the KB
subgraph to a sequence and apply a sequence encoder. Failing to utilize the
graph structure of the input data may limit the effectiveness of QG models.
As for the multi-hop QG from text setting which requires reasoning over
multiple paragraphs or documents, it is beneficial to capture the relationships
among different entity mentions across multiple paragraphs or documents.
In summary, modeling the rich structures of the input data is important for
many QG tasks. Recently, GNNs have been successfully applied to the QG

90

tasks (Liu et al., 2019b; Chen et al., 2020i; Wang et al., 2020d).

Methodologies Most GNN-based QG approaches adopt a Graph2Seq
architecture where a GNN-based encoder is employed to model the graph-
structured input data, and a sequence decoder is employed to generate a
natural language question. In this section, we introduce and summarize some
representative GNN-related techniques adopted in recent QG approaches.

• Graph Construction. Different graph construction strategies have been
proposed to suit the various needs of different QG settings by prior
GNN-based approaches. Some works (Liu et al., 2019b; Wang et al.,
2020d; Chen et al., 2020i; Pan et al., 2020) converted the passage
text to a graph based on dependency parsing or semantic role labeling
for QG from text. As for multi-hop QG from text, in order to model
the relationships among entity mentions across multiple paragraphs or
documents, an entity graph is often constructed. For instance, Su et al.
(2020) constructed an entity graph with the named entities in context
as nodes and edges connecting the entity pairs appearing in the same
sentence or paragraph. In addition, an answer-aware dynamic entity
graph was created on the fly by masking out entities irrelevant to the
answers. Sachan et al. (2020) built a so-called context-entity graph
containing three types of nodes (i.e., named-entity mentions, coreferent
entities, and sentence-ids) and added edges connecting them. Unlike the
above approaches that build a static graph based on prior knowledge,
Chen et al. (2020i) explored dynamic graph construction for converting
the passage text to a graph of word nodes by leveraging the attention
mechanism. As for QG from KG, graph construction is not needed
since the KG is already provided. A common option is to extract a
k-hop subgraph surrounding the topic entity as the input graph when
generating a question (Chen et al., 2020g).

• Graph Representation Learning. Common GNN models used by
existing QG approaches include GCN (Liu et al., 2019b; Su et al.,
2020), GAT (Wang et al., 2020d), GGNN (Chen et al., 2020i; Chen et
al., 2020g; Pan et al., 2020), and graph transformer (Sachan et al., 2020).
In order to model the edge direction information, Chen et al. (2020i)

0.7. Applications 91

and Chen et al. (2020g) extended the GGNN model to handle directed
edges. In order to model multi-relational graphs, Chen et al. (2020g)
explored two graph encoding strategies: i) converting a multi-relational
graph to a Levi graph (Levi, 1942) and applying a regular GGNN model,
or ii) extending the GGNN model by incorporating the edge information
in the message passing process. Pan et al. (2020) also extended the
GGNN model by bringing in the attention mechanism from GAT and
introducing edge type aware linear transformations for message passing
between node pairs. Sachan et al. (2020) proposed a graph-augmented
transformer model employing a relation-aware multi-head attention
mechanism similar to Zhu et al. (2019c) and Cai and Lam (2020b). Pan
et al. (2020) and Sachan et al. (2020) found it beneficial to additionally
model the sequential information in the input text besides the graph-
structured information. Pan et al. (2020) separately applied a sequence
encoder to the document text, and a graph encoder to the semantic graph
representation of the document constructed from semantic role labeling
or dependency parsing. The outputs of the sequence encoder and graph
encoder would then be fused and fed to a sequence decoder for question
generation. The model was jointly trained on question decoding and
content selection sub-tasks. Sachan et al. (2020) ran both the structure-
aware attention network on the input graph and the standard attention
network on the input sequence, and fused their output embeddings using
some non-linear mapping function to learn the final embeddings for
the sequence decoder. During the training, a contrastive objective was
proposed to predict supporting facts, serving as a regularization term in
addition to the main cross-entropy loss for sequence generation.

Benchmarks and Evaluation Common benchmarks for QG from text
include SQuAD (Rajpurkar et al., 2016), NewsQA (Trischler et al., 2017), and
HotpotQA (Yang et al., 2018a). As for QG from KG, WebQuestions (Kumar
et al., 2019) and PathQuestions (Kumar et al., 2019) are widely used by
previous works. As for evaluation metrics, BLEU-4, METEOR, ROUGE-L and
human evaluation (e.g., syntactically correct, semantically correct, relevant)
are common metrics. Complexity is also used to evaluate the performance of
multi-hop QG systems.

92

0.7.2 Machine Reading Comprehension and Question Answering

Machine Reading Comprehension

Background and Motivation The task of Machine Reading Compre-
hension (MRC) aims to answer a natural language question using the given
passage. Significant progress has been made in the MRC task thanks to the
development of various (co-)attention mechanisms that capture the interaction
between the question and context (Hermann et al., 2015; Cui et al., 2017;
Seo et al., 2017; Xiong et al., 2017a). Considering that the traditional MRC
setting mainly focuses on one-hop reasoning which is relatively simple, re-
cently, more research efforts have been made to solve more challenging MRC
settings. For instance, the multi-hop MRC task is to answer a natural language
question using multiple passages or documents, which requires the multi-hop
reasoning capacity. The conversational MRC task is to answer the current
natural language question in a conversation given a passage and the previous
questions and answers, which requires the capacity of modeling conversa-
tion history. The numerical MRC task requires the capacity of performing
numerical reasoning over the passage. These challenging MRC tasks call
for the learning capacity of modeling complex relations among objects. For
example, it is beneficial to model relations among multiple documents and the
entity mentions within the documents for the multi-hop MRC task. Recently,
GNNs have been successfully applied to various types of MRC tasks including
multi-hop MRC (Song et al., 2018b; Cao et al., 2019a; Qiu et al., 2019; Cao
et al., 2019c; Fang et al., 2020b; Tang et al., 2020b; Zheng and Kordjamshidi,
2020; Tu et al., 2019b; Ding et al., 2019a), conversational MRC (Chen et al.,
2020h), and numerical MRC (Ran et al., 2019).

Methodologies GNN-based MRC approaches typically operate by first
constructing an entity graph or hierarchical graph capturing rich relations
among nodes in the graph, and then applying a GNN-based reasoning module
for performing complex reasoning over the graph. Assuming the GNN outputs
already encode the semantic meanings of the node itself and its neighboring
structure, a prediction module will finally be applied for predicting answers.
The graph construction techniques and graph representation techniques de-
veloped for solving the MRC task vary between different approaches. In
this section, we introduce and summarize some representative GNN-related

0.7. Applications 93

techniques adopted in recent MRC approaches.

• Graph Construction. In order to apply GNNs for complex reasoning
in the MRC task, one critical step is graph construction. Building a
high-quality graph capturing rich relations among useful objects (e.g.,
entity mentions, paragraphs) is the foundation for conducting graph-
based complex reasoning. Most GNN-based MRC approaches conduct
static graph construction by utilizing domain-specific prior knowledge.
Among all existing GNN-based MRC approaches, the most widely
adopted strategy for static graph construction is to construct an entity
graph using carefully designed rules. These approaches (Song et al.,
2018b; Cao et al., 2019a; Qiu et al., 2019; Cao et al., 2019c; Tang et al.,
2020b; Zheng and Kordjamshidi, 2020; Ran et al., 2019) usually extract
entity mentions from questions, paragraphs and candidate answers (if
given) as nodes, and connect the nodes with edges capturing different
types of relations such as exact match, co-occurrence, coreference and
semantic role labeling. Edge connectivity with different granularity lev-
els in terms of context window (e.g., sentence, paragraph and document)
might also be distinguished for better modeling performance (Qiu et al.,
2019; Cao et al., 2019c). For instance, Cao et al. (2019c) distinguished
cross-document edge and within-document edge when building an entity
graph. As for the numerical MRC task, the most important relations are
probably the arithmetic relations. In order to explicitly model numerical
reasoning, Ran et al. (2019) constructed a graph containing numbers
in the question and passage as nodes, and added edges to capture vari-
ous arithmetic relations among the numbers. Besides building an entity
graph capturing various types of relations among entity mentions, some
approaches (Tu et al., 2019b; Fang et al., 2020b; Zheng et al., 2020) opt
to build a hierarchical graph containing various types of nodes including
entity mentions, sentences, paragraphs and documents, and connect
these nodes using predefined rules. For example, Zheng et al. (2020)
constructed a hierarchical graph that contains edges connecting token
nodes and sentence nodes, sentence nodes and paragraph nodes as well
as paragraph nodes and document nodes.

Very recently, dynamic graph construction techniques without relying
on hand-crafted rules have also been explored for the MRC task and

94

achieved promising results. Unlike static graph construction techniques
that have been widely explored in the MRC literature, dynamic graph
construction techniques are less studied. In comparison to static graph
construction, dynamic graph construction aims to build a graph on the
fly without relying on domain-specific prior knowledge, and is typically
jointly learned with the remaining learning modules of the system.
Recently, Chen et al. (2020h) proposed a GNN-based model for the
conversational MRC task, which is able to dynamically build a question
and conversation history aware passage graph containing each passage
word as a node at each conversation turn by leveraging the attention
mechanism. A kNN-style graph sparsification operation was conducted
so as to further extract a sparse graph from the fully-connected graph
learned by the attention mechanism. The learned sparse graph will be
consumed by the subsequent GNN-based reasoning module, and the
whole system is end-to-end trainable.

• Graph Representation Learning. Most GNN-based MRC approaches
rely on a GNN model for performing complex reasoning over the graph.
In the literature of the MRC task, both homogeneous GNNs and multi-
relational GNNs have been explored for node representation learning.
Even though most GNN-based MRC approaches construct a multi-
relational or heterogeneous graph, some of them still apply a homo-
geneous GNN model such as GCN (Zheng and Kordjamshidi, 2020;
Ding et al., 2019a), GAT (Qiu et al., 2019; Fang et al., 2020b; Zheng
et al., 2020) and Graph Recurrent Network (GRN) (Song et al., 2018b).
Unlike other works that apply a GNN model to a single graph, Chen
et al. (2020h) proposed a Recurrent Graph Neural Network (RGNN)
for processing a sequence of passage graphs for modeling conversa-
tional history. The most widely used multi-relational GNN model in
the MRC task is the RGCN model (Schlichtkrull et al., 2018). Many
approaches (Cao et al., 2019a; Cao et al., 2019c; Tu et al., 2019b;
Ran et al., 2019) adopt a gating RGCN variant which in addition intro-
duces a gating mechanism regulating how much of the update message
propagates to the next step. Tang et al. (2020b) further proposed a
question-aware gating mechanism for RGCN, that is able to regulate
the aggregated message according to the question, and even bring the

0.7. Applications 95

question information into the update message.

• Node Embedding Initialization. Many studies have shown that the
quality of the initial node embeddings play an important role in the over-
all performance of GNN-based models. Most approaches use pre-trained
word embeddings such as GloVe (Pennington et al., 2014), ELMo (Pe-
ters et al., 2018), BERT (Devlin et al., 2019) and RoBERTa (Liu et al.,
2019d) to initialize tokens. Some works (Cao et al., 2019c; Chen et al.,
2020h) also concatenated linguistic features to word embeddings to
enrich the semantic meanings. On top of the initial word embeddings,
most approaches choose to further apply some transformation functions
such as MLP for introducing nonlinearity (Tang et al., 2020b), BiLSTM
for capturing local dependency of the text (Cao et al., 2019a; Chen et al.,
2020h; Fang et al., 2020b), co-attention layer for fusing questions to
passages (Qiu et al., 2019; Tu et al., 2019b; Chen et al., 2020h; Fang
et al., 2020b).

• Special Techniques In order to increase the richness of the supervi-
sion signals, some approaches adopt the multi-tasking learning strat-
egy to predict not only the answer span, but also the supporting para-
graph/sentence/fact and answer type (Qiu et al., 2019; Fang et al., 2020b;
Zheng and Kordjamshidi, 2020; Chen et al., 2020h).

Benchmarks and Evaluation Common multi-hop MRC benchmarks
include HotpotQA (Yang et al., 2018a), WikiHop (Welbl et al., 2018) and
ComplexWebQuestions (Talmor and Berant, 2018). Common conversational
MRC benchmarks include CoQA (Reddy et al., 2019), QuAC (Choi et al.,
2020) and DoQA (Campos et al., 2019). DROP (Dua et al., 2019) is a bench-
mark created for the numerical MRC task. As for evaluation metrics, F1 and
EM (i.e., exact match) are the two most widely used evaluation metrics for the
MRC task. Besides, the Human Equivalence Score (HEQ) (Choi et al., 2020;
Campos et al., 2019) is used to judge whether a system performs as well as an
average human. HEQ-Q and HEQ-D are accuracies at the question level and
dialog level, respectively.

96

Knowledge Base Question Answering

Background and Motivation Knowledge Base Question Answering
(KBQA) has emerged as an important research topic in the past few years
(Yih et al., 2015; Zhang et al., 2018d; Chen et al., 2019). The goal of KBQA is
to automatically find answers from the KG given a natural language question.
Recently, due to its nature capability of modeling relationships among objects,
GNNs have been successfully applied for performing the multi-hop KBQA
task which requires reasoning over multiple edges of the KG to arrive at the
right answer. A relevant task is open domain QA (Sun et al., 2018a; Sun et al.,
2019b) which aims to answer open domain questions by leveraging hybrid
knowledge sources including corpus and KG. Here we only focus on the QA
over KG setting, while the GNN applications in the open domain QA task will
be introduced in other sections.

Methodologies In this section, we introduce and summarize some repre-
sentative GNN-related techniques adopted in the recent KBQA research.

• Graph Construction. Semantic parsing based KBQA methods (Yih
et al., 2015) aims at converting natural language questions to a semantic
graph which can be further executed against the KG to find the correct
answers. In order to better model the structure of the semantic graph,
Sorokin and Gurevych (2018a) proposed to use GNNs to encode the
candidate semantic graphs. Specifically, they used a similar procedure as
Yih et al. (2015) to construct multiple candidate semantic graphs given
the question, and chose the one which has the highest matching score to
the question in the embedding space. Feng et al. (2020b) and Yasunaga
et al. (2021) focused on a different multi-choice QA setting which is to
select the correct answer from the provided candidate answer set given
the question and the external KG. For each candidate answer, Feng et al.
(2020b) proposed to extract from the external KG a “contextualized”
subgraph according to the question and candidate answer. This subgraph
serves as the evidence for selecting the corresponding candidate answer
as the final answer. Specifically, they first recognized all the entity
mentions in the question and candidate answer set, and linked them to
entities in the KG. Besides these linked entities in the KG, any other

0.7. Applications 97

entities that appeared in any two-hop paths between pairs of mentioned
entities in the KG as well as the corresponding edges were also added
to the subgraph. Yasunaga et al. (2021) constructed a joint graph by
regarding the QA context as an additional node (QA context node)
and connecting it to the topic entities in the KG subgraph. Specifically,
they introduced two new relation types rz,q and rz,a for capturing the
relationship between the QA context node and the relevant entities in
the KG. The specific relation type is determined by whether the KG
entity is found in the question portion or the answer portion of the QA
context.

• Graph Representation Learning In order to better model the con-
structed multi-relational or heterogeneous graphs, basic GNNs need to
be extended to handle edge types or node types. To this end, Sorokin
and Gurevych (2018a) extended GGNN (Zhang et al., 2020e) to include
edge embeddings in message passing. After learning the vector rep-
resentations of both the question and every candidate semantic graph,
they used a simple reward function to select the best semantic graph
for the question. The final node embedding of the question variable
node (q-node) in each semantic graph was extracted and non-linearly
transformed to obtain the graph-level representation. Feng et al. (2020b)
designed a Multi-hop Graph Relation Network (MHGRN) to unify both
GNNs and path-based models. Specifically, they considered both node
type and edge type information of the graph by introducing node type
specific linear transformation, and node type and relation type aware
attention in message passing. In addition, instead of performing one hop
message passing at each time, inspired by path-based models (Santoro
et al., 2017; Lin et al., 2019b), they proposed to pass messages directly
over all the paths of lengths up to K. Graph-level representations were
obtained via attentive pooling over the output node embeddings, and
would be concatenated with the text representation of question and each
candidate answer to compute the plausibility score. Similarly, Yasunaga
et al. (2021) extended GAT by introducing node type and edge type
aware message passing to handle multi-relational graphs. They in ad-
dition employed a pre-trained language model for KG node relevance
scoring in the initial stage and final answer selection stage.

98

Benchmarks and Evaluation Common benchmarks for KBQA include
WebQuestionsSP (Yih et al., 2016), MetaQA (Zhang et al., 2018d), QALD-
7 (Usbeck et al., 2017), CommonsenseQA (Talmor et al., 2019), and Open-
bookQA (Mihaylov et al., 2018). F1 and accuracy are common metrics for
evaluating KBQA methods.

Open-domain Question Answering

Background and Motivation The task of open-domain question answer-
ing aims to identify answers to the natural question given a large scale of
open-domain knowledge (e.g. documents, knowledge base and etc.). Untill
recent times, the open-domain question answering (Bordes et al., 2015; Zhang
et al., 2018d) has been mostly exploited through knowledge bases such as
Personalized PageRank (Haveliwala, 2002), which actually closely related to
the Knowledge based Question Answering task (KBQA) in techniques. The
knowledge based methods benefit from obtaining external knowledge easily
through graph structure. However, these methods limit in the missing infor-
mation of the knowledge base and fixed schema. Other attempts have been
made to answer questions from massive and unstructured documents (Chen
et al., 2017a). Compared to the KB based methods, these methods can fetch
more information but suffer from the difficulty of retrieve relevant and key
information from redundant external documents.

Methodologies In this section, we introduce and summarize some repre-
sentative GNN-related techniques in the recent open-domain question answer-
ing research.

• Graph Construction. Most of the GNN based methods address the
mentioned challenges by constructing a heterogeneous graph with both
knowledge base and unstructured documents (Han et al., 2020; Sun
et al., 2018a; Sun et al., 2019b). Han et al. (2020) and Sun et al. (2018a)
firstly extract the subgraph from external knowledge base named Per-
sonalized PageRank (Haveliwala, 2002). Then they fetch a relevant text
corpus from Wikipedia and fuse them to the knowledge graph. Specif-
ically, they represent the documents by words’ encoding and link the
nodes (the nodes in the knowledge graph are entities) which appear

0.7. Applications 99

in the document. Sun et al. (2019b) propose a iteratively constructed
heterogeneous graph method from both knowledge base and text corpus.
Initially, the graph depends only on the question. Then for each itera-
tion, they expand the subgraph by choosing nodes from which to "pull"
information about, from the KB or corpus as appropriate.

• Graph Representation Learning Sun et al. (2018a) and Sun et al.
(2019b) first initialize the nodes’ embedding with pre-trained weight
for entities and LSTM encoding for documents. They further propose
different update rule for both entities and documents. For entities, they
apply R-GCN (Schlichtkrull et al., 2018) on the sub-graph only from the
knowledge base and then take average of the linked words’ feature in the
connected documents. The entities’ representation is the combination of:
1) the previous entities themselves’ representation, 2) question encoding,
3) knowledge-subgraph’s aggregation results, and 4) related documents’
aggregation results. For documents’ update operation, they aggregate the
features from connected entities. Sun et al. (2018a) adopt similar idea
for heterogeneous graph representation learning. Technically, before
encoding entities, they incorporate the connected words’ embedding in
the documents to the entities. Then for nodes, they propose GCN with
attention weight to aggregate neighbor entities. Note that the question
is employed in the attention mechanism to guide the learning process.
The documents’ updating process is in the same pattern.

Benchmarks and Evaluation Common benchmarks for Open-domain
Question answering include WebQuestionsSP (Yih et al., 2016), MetaQA (Zhang
et al., 2018d), Complex WebQuestions 1.1 (Complex WebQ) (Talmor and
Berant, 2018), and WikiMovies-10K (Miller et al., 2016). Hits@1 and F1
scores are the common evaluation metrics for this task (Sun et al., 2018a; Sun
et al., 2019b; Han et al., 2020).

Community Question Answering

Background and Motivation The task of community question answering
aims to retrieve the relevant answer from QA forums such as Stack Overflow or
Quora. Different from the traditional MRC (QA) task, CQA systems are able

100

to harness tacit knowledge (embedded in their diverse communities) or explicit
knowledge (embedded in all resolved questions) in answering of an enormous
number of new questions posted each day. Nevertheless, the growing number
of new questions could make CQA systems without appropriate collaboration
support become overloaded by users’ requests.

Methodologies In this section, we introduce and summarize some repre-
sentative GNN-related techniques adopted in the recent CQA research.

• Graph Construction. Most of the GNN-based methods construct a
multi-modal graph for existing question/answer pairs (Hu et al., 2019a;
Hu et al., 2020a). For the given q/a pair (q, a), both of them construct
the question/answer Gq/Ga graph separately. Since in real commu-
nity based forums, the question/answer pairs may contain both visual
and text contents, they employ a multi-modal graph to represent them
jointly. Hu et al. (2019a) firstly employ object detection models such as
YOLO3 (Redmon and Farhadi, 2018) to fetch visual objects. The objects
are represented by their labels (visual words more accurately). The vi-
sual objects are treated as words in the answers which are modeled with
textural contents equally. Then they regard each textural words as vertex
and link them with undirected occurrence edges. Hu et al. (2020a) adopt
the same idea as (Hu et al., 2019a) for building occurrence graph for
both textural contents and visual words. But for extracting visual words
from images, they employ unsupervised Meta-path Link Prediction for
Visual Labeling. Concretely, they define the meta-path over image and
words and build the heterogeneous image-word graph.

• Graph Representation Learning. Most of the GNN-based commu-
nity question answering models adapt the GNN models to capture
structure information. Given the question/answer pair (q, a), Hu et al.
(2019a) stacks the graph pooling network to capture the hierarchical
semantic-level correlations between nodes. Conceptually, the graph
pooling network extract the high-level semantic representation for both
question and answer graphs. Formally, it consists of two GCN-variant
APPNP (Klicpera et al., 2019) encoders. Generally, one APPNP is
employed to learn the high-level semantic cluster distribution for each
vertex. The other APPNP network is used to learn the immediate node

0.7. Applications 101

representation. The final node representation is the fusion of the two
encoders’ results. Hu et al. (2020a) employ the APPNP to learn the
importance of each vertex’s neighbors.

Benchmarks and Evaluation Common benchmarks for Community
Question Answering include Zhihu and Quora released by MMAICM (Hu
et al., 2018). The normalized discounted cumulative gain (nDCG) and pre-
cision are common metrics for evaluating Community Question Answering
methods (Hu et al., 2018; Hu et al., 2020a; Hu et al., 2019a).

0.7.3 Dialog Systems

Background and Motivation Dialog system (Williams et al., 2014; Chen
et al., 2017b) is a computer system that can continuously converse with a
human. In order to build a successful dialog system, it is important to model the
dependencies among different interlocutors or utterances within a conversation.
Due to the ability of modeling complex relations among objects, recently,
GNNs have been successfully applied to various dialog system related tasks
including dialog state tracking (Chen et al., 2018b; Chen et al., 2020b) which
aims at estimating the current dialog state given the conversation history, dialog
response generation (Hu et al., 2019e) which aims at generating the dialog
response given the conversation history, and next utterance selection (Liu et al.,
2021c) which aims at selecting the next utterance from a candidate list given
the conversation history.

Methodologies In this section, we introduce and summarize some rep-
resentative GNN-related techniques adopted in the recent dialog systems
research.

• Graph Construction. Building a high-quality graph representing a
structured conversation session is challenging. A real-world conversa-
tion can have rich interactions among speakers and utterances. Here, we
introduce both static and dynamic graph construction techniques used
in recent GNN-based approaches. For static graphs, most GNN-based
dialog systems rely on prior domain knowledge to construct a graph. For
instance, in order to apply GNNs to model multi-party dialogues (i.e.,

102

involving multiple interlocutors), Hu et al. (2019e) converted utterances
in a structured dialogue session to a directed graph capturing response
relationships between utterances. Specifically, they created an edge for
every pair of utterances from the same speaker following the chrono-
logical order of the utterances. Chen et al. (2018b) built a directed
heterogeneous graph according to the domain ontology that consists of
edges among slot-dependent nodes and slot-independent nodes. Chen
et al. (2020b) constructed three types of graphs including a token-level
schema graph according to the original ontology scheme, a utterance
graph according to the dialogue utterance, and a domain-specific slot-
level schema graph connecting two slots from the same domain or share
the same candidate values. Liu et al. (2021c) constructed a graph con-
necting utterance nodes that are adjacent or belong to dependent topics.
Regarding the dynamic graph construction, unlike most GNN-based
approaches that rely on prior knowledge for constructing static graph,
Chen et al. (2018b) jointly optimized the graph structure and the param-
eters of GNN by approximating posterior probability of the adjacency
matrix (i.e., modeled as a latent variable following a factored Bernoulli
distribution) via variational inference (Hoffman et al., 2013).

• Graph Representation Learning Various GNN models have been ap-
plied in dialog systems. For instance, Liu et al. (2021c) applied GCN
to facilitate reasoning over all utterances. Chen et al. (2020b) proposed
a graph attention matching network to learn the representations of on-
tology schema and dialogue utterance simultaneously, and a recurrent
attention graph neural network which employs a GRU-like gated cell
for dialog state updating. Inspired by the hierarchical sequence-based
HRED model for dialog response generation, Hu et al. (2019e) pro-
posed an utterance-level graph-structured encoder which is a gated
GNN variant, and is able to control how much the new information
(from the preceding utterance nodes) should be considered when up-
dating the current state of the utterance node. They also designed a
bi-directional information flow algorithm to allow both forward and
backward message passing over the directed graph. In order to model
multi-relational graphs, Chen et al. (2018b) designed a R-GCN like
GNN model employing edge type specific weight matrices.

0.7. Applications 103

• Node Embedding Initialization In terms of node embedding initial-
ization for GNN models, Hu et al. (2019e) applied a BiLSTM to first
encode the local dependency information in the raw text sequence. Liu
et al. (2021c) used the state-of-the-art pre-trained ALBERT embed-
dings (Lan et al., 2019) to initialize the node embeddings. Chen et al.
(2020b) included token embeddings, segmentation embeddings as well
as position embeddings to capture the rich semantic meanings of the
nodes.

Benchmarks and Evaluation Common dialog state tracking benchmarks
include PyDial (Casanueva et al., 2017) and MultiWOZ (Budzianowski et al.,
2018; Eric et al., 2020). Ubuntu Dialogue Corpus (Lowe et al., 2015) and
MuTual (Cui et al., 2020a) are often used for evaluating dialog response
generation and next utterance selection systems. As for evaluation metrics,
BLEU, METEOR and ROUGE-L are common metrics for evaluating dialog
response generation systems. Besides automatic evaluation, human evaluation
(e.g., grammaticality, fluency, rationality) is often conducted. Accuracy is the
most widely used metric for evaluating dialog state tracking systems. Recall
at k is often used in the next utterance selection task.

0.7.4 Text Classification

Background and Motivation Traditional text classification methods
heavily rely on feature engineering (e.g., BOW, TF-IDF or more advanced
graph path based features) for text representation. In order to learn “good” rep-
resentations from text, various unsupervised approaches have been proposed
for word or document representation learning, including word2vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014), topic models (Blei et al.,
2003; Larochelle and Lauly, 2012), autoencoder (Miao et al., 2016; Chen
and Zaki, 2017), and doc2vec (Le and Mikolov, 2014; Kiros et al., 2015).
These pre-trained word or document embeddings can further be consumed by
a MLP (Joulin et al., 2017), CNN (Kim, 2014) or LSTM (Liu et al., 2016;
Zhang et al., 2018b) module for training a supervised text classifier. In order
to better capture the relations among words in text or documents in corpus,
various graph-based approaches have been proposed for text classification. For
instance, Peng et al. (2018) proposed to first construct a graph of words, and

104

then apply a CNN to the normalized subgraph. Tang et al. (2015) proposed
a network embedding based approach for text representation learning in a
semi-supervised manner by converting a partially labeled text corpora to a het-
erogeneous text network. Recently, given the strong expressive power, GNNs
have been successfully applied to both semi-supervised (Yao et al., 2019a; Liu
et al., 2020; Hu et al., 2019c) and supervised (Defferrard et al., 2016; Huang
et al., 2019; Zhang et al., 2020e) text classification.

Methodologies GNN-based text classification approaches typically op-
erate by first constructing a document graph or corpus graph capturing rich
relations among nodes in the graph, and then applying a GNN to learn good
document embeddings which will later be fed into a softmax layer for produc-
ing a probabilistic distribution over a class of labels. The graph construction
techniques and graph representation techniques developed for solving the text
classification task vary between different approaches. In this section, we intro-
duce and summarize some representative GNN-related techniques adopted in
recent text classification approaches.

• Graph Construction. Semi-supervised text classification leverages a
small amount of labeled data with a large amount of unlabeled data
during training. Utilizing the relations among labeled and unlabeled doc-
uments is essential for performing well in this semi-supervised setting.
Regarding the static graph construction, recently, many GNN-based
semi-supervised approaches (Yao et al., 2019a; Liu et al., 2020; Hu et
al., 2019c) have been proposed for text classification to better model the
relations among words and documents in the corpus. These approaches
typically construct a single heterogeneous graph for the whole corpus
containing word nodes and document nodes, and connect the nodes with
edges based on word co-occurrence and document-word relations (Yao
et al., 2019a; Liu et al., 2020). Hu et al. (2019c) proposed to enrich
the semantics of the short text with additional information (i.e., topics
and entities), and constructed a Heterogeneous Information Network
(HIN) containing document, topic and entity nodes with document-topic,
document-entity and entity-entity edges based on several predefined
rules. One limitation of semi-supervised text classification is its inca-
pability of handling unseen documents in the testing phase. In order to

0.7. Applications 105

handle the inductive learning setting, some GNN-based approaches (Def-
ferrard et al., 2016; Huang et al., 2019; Zhang et al., 2020e) proposed
to instead build an individual graph of unique words for each document
by leveraging word similarity or co-occurrence between words within
certain fixed-sized context window. In comparison to static graph con-
struction, dynamic graph construction does not rely on domain-specific
prior knowledge, and the graph structure can be jointly learned with
the remaining learning modules of the system. Henaff et al. (2015)
proposed to jointly learn a graph of unique words for each input text
using a Gaussian kernel. Chen et al. (2020f) proposed to regard each
word in text as a node in a graph, and dynamically build a graph for
each document.

• Graph Representation Learning Early graph-based text classification
approaches (Henaff et al., 2015; Defferrard et al., 2016) were motivated
by extending CNNs to graph CNNs which can directly model graph-
structured textual data. With the fast growth of the GNN research, recent
work started to explore various GNN models for text classification in-
cluding GCN (Yao et al., 2019a; Chen et al., 2020f), GGNN (Zhang
et al., 2020e) and message passing mechanism (MPM) (Huang et al.,
2019). Liu et al. (2020) introduced a TensorGCN which first performs
intra-graph convolution propagation and then performs inter-graph con-
volution propagation. Hu et al. (2019c) proposed a Heterogeneous GAT
(HGAT) based on a dual-level (i.e., node-level and type-level) attention
mechanism.

• Node Embedding Initialization Node embedding initialization is criti-
cal for the GNN performance. Interestingly, Yao et al. (2019a) observed
in their experiments that by using only one-hot representation, a vanilla
GCN (Yao et al., 2019a) without any external word embeddings or
knowledge already outperformed state-of-the-art methods for text clas-
sification. Nevertheless, most GNN-based approaches (Defferrard et al.,
2016; Hu et al., 2019c; Huang et al., 2019; Liu et al., 2020; Zhang et al.,
2020e) still use pre-trained word embeddings to initialize node embed-
dings. Chen et al. (2020f) further applied a BiLSTM to a sequence of
word embeddings to capture the contextual information of text for node
embedding initialization.

106

• Special Techniques As a common trick used in text classification,
some GNN-based approaches removed stop words during preprocess-
ing (Henaff et al., 2015; Yao et al., 2019a; Zhang et al., 2020e).

Benchmarks and Evaluation Common benchmarks for evaluating text
classification methods include 20NEWS (Lang, 1995), Ohsumed (Hersh et al.,
1994), Reuters (Lewis et al., 2004), Movie Review (MR) (Pang and Lee, 2004),
AGNews (Zhang et al., 2015), Snippets (Phan et al., 2008), TagMyNews (Vi-
tale et al., 2012), and Twitter1. Accuracy is the most common evaluation
metric.

0.7.5 Text Matching

Background and Motivation Most existing text matching approaches
operate by mapping each text into a latent embedding space via some neural
networks such as CNNs (Hu et al., 2014; Pang et al., 2016) or RNNs (Wan
et al., 2016), and then computing the matching score based on the similarity be-
tween the text representations. In order to model the rich interactions between
two texts at different granularity levels, sophisticated attention or matching
components are often carefully designed (Lu and Li, 2013; Palangi et al.,
2016; Yang et al., 2016). Recently, there are a few works (Chen et al., 2020c;
Liu et al., 2019a) successfully exploring GNNs for modeling the complicated
interactions between text elements in the text matching literature.

Methodologies In this section, we introduce and summarize some repre-
sentative GNN-related techniques adopted in recent text matching approaches.

• Graph Construction Chinese short text matching heavily relies on
the quality of word segmentation. Instead of segmenting each sentence
into a word sequence during preprocessing which can be erroneous,
ambiguous or inconsistent, Chen et al. (2020c) proposed to construct
a word lattice graph from all possible segmentation paths. Specifically,
the word lattice graph contains all character subsequences that match
words in a lexicon as nodes, and adds an edge between two nodes if
they are adjacent in the original sentence. As a result, the constructed

1https://www.nltk.org/

https://www.nltk.org/

0.7. Applications 107

graph encodes multiple word segmentation hypotheses for text matching.
In order to tackle long text matching, Liu et al. (2019a) proposed to
organize documents into a graph of concepts (i.e., a keyword or a set
of highly correlated keywords in a document), and built a concept
interaction heterogeneous graph that consists of three types of edges
including keyword-keyword, keyword-concept and sentence-concept
edges. Specifically, they first constructed a keyword co-occurrence
graph, and based on that, they grouped keywords into concepts by
applying community detection algorithms on the keyword co-occurrence
graph. Finally, they assigned each sentence to the most similar concept.

• Graph Representation Learning Liu et al. (2019a) applied a GCN
model to learn meaningful node embeddings in the constructed graph.
Chen et al. (2020c) designed a GNN-based graph matching module
which allows bidirectional message passing across nodes in both text
graphs. In order to obtain graph-level embeddings from the learned node
embeddings, max pooling (Liu et al., 2019a) or attentive pooling (Chen
et al., 2020c) techniques were adopted.

• Node Embedding Initialization As for node embedding initialization,
Chen et al. (2020c) used the BERT embeddings while Liu et al. (2019a)
first computed a match vector for each node in the graph.

Benchmarks and Evaluation Common benchmarks for text matching
include LCQMC (Liu et al., 2018c), BQ (Chen et al., 2018a), CNSE (Liu
et al., 2019a), and CNSS (Liu et al., 2019a). Accuracy and F1 are the most
widely used evaluation metrics.

0.7.6 Topic Modeling

Background and Motivation The task of topic modeling aims to dis-
cover the abstract “topics” that emerge in a corpus. Typically, a topic model
learns to represent a piece of text as a mixture of topics where a topic itself is
represented as a mixture of words from a vocabulary. Classical topic models
include graphical model based methods (Blei et al., 2003; Blei et al., 2010),
autoregressive model based methods (Larochelle and Lauly, 2012), and au-
toencoder based methods (Miao et al., 2016; Chen and Zaki, 2017; Isonuma

108

et al., 2020). Recent works (Zhu et al., 2018; Zhou et al., 2020a; Yang et al.,
2020) have explored GNN-based methods for topic modeling by explicitly
modeling the relationships between documents and words.

Methodologies In this section, we introduce and summarize some rep-
resentative GNN-related techniques adopted in recent topic modeling ap-
proaches.

• Graph Construction How to construct a high-quality graph which
naturally captures useful relationships between documents and words
is the most important for GNN applications in the topic modeling task.
Various graph construction strategies have been proposed for GNN-
based topic models. In order to explicitly model the word co-occurrence,
Zhu et al. (2018) extracted the biterms (i.e., word pairs) within a fixed-
length text window for every document from a sampled mini-corpus, and
built an undirected biterm graph where each node represents a word, and
each edge weight indicates the frequency of the corresponding biterm in
the mini-corpus. Zhou et al. (2020a) built a graph containing documents
and words in the corpus as nodes, and added edges to connect document
nodes and word nodes based on co-occurrence information where the
edge weight matrix is basically the TF-IDF matrix. Yang et al. (2020)
converted a corpus to a bi-partite graph containing document nodes and
word nodes, and the edge weight indicates the frequency of the word in
the document.

• Graph Representation Learning Given a graph representation of the
corpus, Zhu et al. (2018) designed a GCN-based autoencoder model
to reconstruct the input biterm graph. In addition, residual connections
were introduced to the GCN architecture so as to avoid oversmooth-
ing when stacking many GCN layers. Similarly, Zhou et al. (2020a)
designed a GCN-based autoencoder model to restore the original docu-
ment representations. Notably, Zhu et al. (2018) and Zhou et al. (2020a)
reused the adjacency matrix as the node feature matrix which captures
the word co-occurrence information. During the inference time, for both
of the autoencoder-based methods, the weight matrix of the decoder net-
work can be interpreted as the (unnormalized) word distributions of the

0.7. Applications 109

learned topics. Given the observations that Probabilistic Latent Seman-
tic Indexing (pLSI) (Hofmann, 1999) can be interpreted as stochastic
block model (SBM) (Abbe, 2017) on a specific bi-partite graph, and
GAT can be interpreted as the semi-amortized inference of SBM, Yang
et al. (2020) proposed a GAT-based topic modeling network to model
the topic structure of non-i.i.d documents. As for node embedding ini-
tialization, they used pre-trained word embeddings to initialize word
node features, and term frequency vectors to initialize document node
features.

Benchmarks and Evaluation Common benchmarks for the topic mod-
eling task include 20NEWS (Lang, 1995), All News (Thompson, 2017),
Grolier (Wang et al., 2019d), NYTimes (Wang et al., 2019d), and Reuters (Lewis
et al., 2004). As for evaluation metrics, since it is challenging to annotate the
ground-truth topics for a document, topic coherence score and case study on
learned topics are typical means of judging the quality of the learned topics.
Besides, with the topic representations of text output by a topic model, the
performance on downstream tasks such as text classification can also be used
to evaluate topic models.

0.7.7 Sentiment Classification

Background and Motivation The sentiment classification task aims to
detect the sentiment (i.e., positive, negative or neutral) of a piece of text (Pang
et al., 2002). Unlike general sentiment classification, aspect level sentiment
classification aims at identifying the sentiment polarity of text regarding a
specific aspect, and has received more attention (Pontiki et al., 2014). While
most works focus on sentence level and single domain sentiment classification,
some attempts have been made on document level (Chen et al., 2020e) and
cross-domain (Ghosal et al., 2020) sentiment classification. Early works on
sentiment classification heavily relied on feature engineering (Jiang et al.,
2011). Recent attempts (Tang et al., 2016; Huang and Carley, 2018) leveraged
the expressive power of various neural network models such as LSTM (Hochre-
iter and Schmidhuber, 1997), CNN (LeCun and Bengio, 1998) or Memory
Networks (Sukhbaatar et al., 2015). Very recently, more attempts have been
made to leverage GNNs to better model syntactic and semantic meanings of

110

text for the sentiment classification task.

Methodologies GNN-based sentiment classification approaches typically
operate by first constructing a graph representation (e.g., dependency tree)
of the text, and then applying a GNN to learn good text embeddings which
will be used for predicting the sentiment polarity. The graph construction
techniques and graph representation techniques developed for solving the
sentiment classification task vary between different approaches. In this section,
we introduce and summarize some representative GNN-related techniques
adopted in recent sentiment classification approaches.

• Graph Construction Most GNN-based approaches (Zhang et al., 2019a;
Sun et al., 2019c; Huang and Carley, 2019; Pouran Ben Veyseh et al.,
2020; Tang et al., 2020a; Wang et al., 2020b) for sentence level sen-
timent classification used a dependency tree structure to represent the
input text. Besides using a dependency graph for capturing syntactic
information, Zhang and Qian (2020) in addition constructed a global
lexical graph to encode the corpus level word co-occurrence informa-
tion, and further built a concept hierarchy on both the syntactic and
lexical graphs. Ghosal et al. (2020) constructed a subgraph from Con-
ceptNet (Speer et al., 2017) using seed concepts extracted from text.
To capture the document-level sentiment preference information, Chen
et al. (2020e) built a bipartite graph with edges connecting sentence
nodes to the corresponding aspect nodes for capturing the intra-aspect
consistency, and a graph with edges connecting sentence nodes within
the same document for capturing the inter-aspect tendency.

• Graph Representation Learning Both the design of GNN models and
quality of initial node embeddings are critical for the overall perfor-
mance of GNN-based sentiment classification methods. Common GNN
models adopted in the sentiment classification task include GCN (Zhang
et al., 2019a; Sun et al., 2019c; Pouran Ben Veyseh et al., 2020; Zhang
and Qian, 2020), GAT (Huang and Carley, 2019; Chen et al., 2020e)
and Graph Transformer (Tang et al., 2020a). To handle multi-relational
graphs, R-GCN (Ghosal et al., 2020) and R-GAT (Wang et al., 2020b)
were also applied to perform relation-aware message passing over

0.7. Applications 111

graphs. Most approaches used GloVe+BiLSTM (Sun et al., 2019c; Tang
et al., 2020a; Wang et al., 2020b; Tang et al., 2020a) or BERT (Huang
and Carley, 2019; Pouran Ben Veyseh et al., 2020; Chen et al., 2020e;
Wang et al., 2020b; Tang et al., 2020a) to initialize node embeddings.

• Special Techniques One common trick used in aspect level sentiment
classification is to include position weights or embeddings (Zhang et al.,
2019a; Zhang and Qian, 2020) to emphasize more on tokens closer to
the aspect phase.

Benchmarks and Evaluation Common benchmarks for evaluating sen-
timent classification methods include Twitter (Dong et al., 2014), SemEval
sentiment analysis datasets (Pontiki et al., 2014; Pontiki et al., 2015; Pontiki
et al., 2016), MAMS (Jiang et al., 2019), and Amazon-reviews (Blitzer et al.,
2007). Accuracy and F1 are the most common evaluation metrics.

0.7.8 Knowledge Graph

Knowledge graph (KG), which represents the real world knowledge in a struc-
tured form, has attracted a lot of attention in academia and industry. KG can
be denoted as a set of triples of the form ⟨subject, relation, object⟩. There
are three main tasks in term of KG, namely, knowledge graph embedding
(KGE), knowledge graph completion (KGC), and Knowledge Graph Align-
ment (KGA). KGE aims to map entities and relations into low-dimensional
vectors, which usually regarded as the sub-task in KGC and KGA. In this
section, we will give a overview of the graph-based approaches to KGC and
KGA.

Knowledge Graph Completion

Background and Motivation The purpose of KGC is to predict new
triples on the basis of existing triples, so as to further extend KGs. KGC is
usually considered as a link prediction task. Formally, the knowledge graph is
represented by G = (V, E ,R), in which entities vi ∈ V , edges (vs, r, vo) ∈ E ,
and r ∈ R is a relation type. This task scores for new facts (i.e. triples
like ⟨subject, relation, object⟩) to determine how likely those edges are to
belong to E .

112

Methodologies. KGC can be solved with an encoder-decoder framework.
To encode the local neighborhood information of an entity, the encoder can be
chosen from a variety of GNNs such as GCN(Malaviya et al., 2020; Shang et
al., 2019), R-GCN (Schlichtkrull et al., 2018; Teru et al., 2020) and Attention-
based GNNs (Nathani et al., 2019b; Bansal et al., 2019; Zhang et al., 2020g;
Wang et al., 2019a). Then, the encoder maps each entity (subject entity and ob-
ject entity) vi ∈ V to a real-valued vector ei ∈ Rd. Relation can be represented
as an embedding er or a matrix Mr. Following the framework concluded by
Wang et al. (2019g), the GNN encoder in a multi-relational graph (such as
KG) can be formulated as:

a(l)
v = AGGREGATEl(h(l−1)

r,u ,∀u ∈ N r
v)

h(l)
v = COMBINEl(h

(l−1)
r0,v , a(l)

v)
(93)

where h(l−1)
r,u denotes the message passing from the neighbor node u under

relation r at the l th layer. For example, RGCN (Schlichtkrull et al., 2018) sets
h

(l−1)
r,u = W

(l−1)
r h

(l−1)
u and AGGREGATE(·) be mean pooling. Since the

knowledge graph is very large, the update of the node representation Eq.93
is efficiently implemented by using sparse matrix multiplications to avoid
explicit summation over neighborhoods in practice.

The decoder is a knowledge graph embedding model and can be regarded
as a scoring function. The most common decoders of knowledge graph comple-
tion includes translation-based models (TransE (Bordes et al., 2013)), tensor
factorization based models (DistMult (Yang et al., 2014), ComplEx(Trouillon
et al., 2016)) and neural network base models (ConvE (Dettmers et al., 2018b)).
In Table 4 , we summarize these common scoring functions following Ji et al.
(2020). Re(·) denotes the real part of a vector, ∗ denotes convolution operator,
ω denotes convolution filters and g(·) is a non-linear function. For example,
RGCN uses DistMult as a scoring function, and DistMult can perform well
on the standard link prediction benchmarks when used alone. In DistMult,
every relation r is represented by a diagonal matrix Mr ∈ Rd×d and a triple is
scored as f(s, r, o) = eT

s Mreo.
At last, the model is trained with negative sampling, which randomly

corrupts either the subject or the object of each positive example. To optimize
KGC models, cross-entropy loss (Schlichtkrull et al., 2018; Wang et al., 2019g;
Zhang et al., 2020g; Malaviya et al., 2020) and margin-based loss (Teru et al.,

0.7. Applications 113

Table 4: KGC Scoring Function.

Model Ent. embed. Rel. embed. Scoring Function f(s, r, o)
DistMult

es, eo ∈ Rd Mr ∈ Rd×d eT
s Mreo

(Schlichtkrull et al., 2018)
(Wang et al., 2019g)
(Bansal et al., 2019)

ComplEx
es, eo ∈ Cd er ∈ Cd Re(er, es, ēt) = Re(

∑K
k=1 eresēt)(Wang et al., 2019g)

ConvKB
es, eo ∈ Rd er ∈ Rd concat(σ([es, er, eo] ∗ ω)) · w(Nathani et al., 2019a)

ConvE
Ms ∈ Rdw×dh , eo ∈ Rd Mr ∈ Rdw×dh σ(vec(σ([Ms;Mr] ∗ ω))W)eo(Wang et al., 2019a)

Conv-TransE
es, eo ∈ Rd er ∈ Rd g(vec(M(es, er))W)eo(Shang et al., 2019)

(Malaviya et al., 2020)

2020; Nathani et al., 2019a) are common loss functions used for optimizing
KGC models.

Benchmarks and Evaluation Common KGC benchmark datasets in-
clude FB15k-237 (Dettmers et al., 2018a), WN18RR (Toutanova et al., 2015),
NELL-995 (Xiong et al., 2017b) and Kinship (Lin et al., 2018). Two com-
monly used evaluation metrics are mean reciprocal rank (MRR) and Hits at n
(H@n), where n is usually 1, 3, or 10.

Knowledge Graph Alignment

Background and Motivation . KGA aims at finding corresponding nodes
or edges referring to the same entity or relationship in different knowledge
graphs. KGA, such as cross-lingual knowledge graphs alignment, is useful for
constructing more complete and compact KGs. Let G1 = (V1, E1,R1) and
G2 = (V2, E2,R2) be two different KGs, and S = {(vi1 , vi2)|vi1 ∈ V1, vi2 ∈
V2} be a set of pre-aligned entity pairs between G1 and G2. The core task of
KGA is entity or relation alignment, which is defined as finding new entity or
relation alignments based on the existing ones.

Methodologies. GNN-based KGA or entity alignment approaches mostly
use GNN models to learn the representations of the entities and relations in
different KGs. Then, entity/relation alignment can be performed by computing
the distance between two entities/relations. GCN is widely used in (Wang

114

et al., 2018; Xu et al., 2019a; Wu et al., 2019b). To further capture the relation
information existing in multi-relational KGs, Wu et al. (2019a) proposed a
Relation-aware Dual-Graph Convolutional Network (RDGCN), which also ap-
plied a graph attention mechanism. Similarly, Ye et al. (2019) also introduced
relation information by proposing a vectorized relational graph convolutional
network (VR-GCN). Cao et al. (2019b) proposed a Multi-channel Graph Neu-
ral Network model (MuGNN) containing a KG self-attention module and a
cross-KG attention module to encode two KGs via multiple channels. GAT is
another common model, which is applied in (Li et al., 2019; Sun et al., 2020b;
Wang et al., 2020h). Moreover, Sun et al. (2020b), Wu et al. (2019a), and Wu
et al. (2019b) also introduced a gating mechanism to control the aggregation
of neighboring information.

Entity/relation alignments are predicted by the distance between the en-
tity/relation embeddings. The distance measuring functions are mainly based
on L1 norm (Ye et al., 2019; Wu et al., 2019a; Wang et al., 2018; Wu et al.,
2019b), L2 norm (Cao et al., 2019b; Li et al., 2019; Sun et al., 2020b), cosine
similarity (Xu et al., 2019a), and feed-forward neural network (Xu et al.,
2019a; Wang et al., 2020h).

Benchmarks and Evaluation. Common KGA benchmarks datasets in-
clude DBP15K (Sun et al., 2017) and DWY 100K (Sun et al., 2018b).
DBP15K contains three cross-lingual datasets: DBPZH−EN (Chinese to
English), DBPJA−EN (Japanese to English), and DBPF R−EN (French to
English). DWY 100K is composed of two large-scale cross-resource datasets:
DWY −WD (DBpedia to Wikidata) andDWY −Y G (DBpedia to YAGO3).
Hits@N, which is calculated by measuring the proportion of correctly aligned
entities/relations in the top N list, is used as evaluation metric to assess the
performance of the models.

0.7.9 Information Extraction

Background and Motivation Information Extraction (IE) aims to extract
entity pairs and their relationships of a given sentence or document. IE is a
significant task because it contributes to the automatic knowledge graph con-
struction from unstructured texts. With the success of deep neural networks,
NN-based methods have been applied to information extraction. However,

0.7. Applications 115

these methods often ignore the non-local and non-sequential context infor-
mation of the input text (Qian et al., 2019). Furthermore, the prediction of
overlapping relations, namely the relation prediction of pairs of entities sharing
the same entities, cannot be solved properly (Fu et al., 2019). To these ends,
GNNs have been widely used to model the interaction between entities and
relations in the text.

Methodologies Information extraction composed of two sub-tasks: named
entity recognition (NER) and relation extraction (RE). NER predicts a label
for each word in a sentence, which is often regarded as a sequence tagging
task (Qian et al., 2019). RE predicts a relation type for every pair of entities in
the text. When the entities are annotated in the input text, the IE task degrades
into an RE task (Sahu et al., 2019; Christopoulou et al., 2019; Guo et al.,
2019b; Zhu et al., 2019a; Zhang et al., 2019d; Zhang et al., 2018c; Vashishth
et al., 2018; Zeng et al., 2020; Song et al., 2018e). GNN-based IE approaches
typically operate via a pipeline approach. First, a text graph is constructed.
Then, the entities are recognized and the relationships between entity pairs
are predicted. Very recently, researchers starts to jointly learn the NER and
RE to take advantage of the interaction between these two sub-tasks (Fu et al.,
2019; Luan et al., 2019; Sun et al., 2019a). Followings are the introduction of
different GNN-based techniques.

• Graph Construction Most GNN-based information extraction meth-
ods design specific rules to construct static graphs. Because the input
of IE task is usually a document containing multiple sentences, the
nodes in the constructed graph can be words, entity spans and sentences
and the corresponding edges are word-level edges, span-level edges
and sentence-level edges. These nodes can be connected by syntactic
dependency edges (Fu et al., 2019; Guo et al., 2019b; Zhang et al.,
2018c; Vashishth et al., 2018; Song et al., 2018e; Sahu et al., 2019),
co-reference edges (Luan et al., 2019; Zeng et al., 2020; Sahu et al.,
2019), re-occurrence edges (Qian et al., 2019), co-occurrence edges
(Christopoulou et al., 2019; Zeng et al., 2020), adjacent word edges
(Qian et al., 2019; Luan et al., 2019; Sahu et al., 2019) and adjacent sen-
tence edge (Sahu et al., 2019). Recently, dynamic graph construction has
also been successfully applied in IE tasks. (Luan et al., 2019) proposed

116

a general IE framework using dynamically constructed span graphs,
which selected the most confident entity spans from the input document
and linked these span nodes with co-references and confidence-weighted
relation types. (Sun et al., 2019a) first constructs a static entity-relation
bipartite graph and then investigates the dynamic graph for pruning
redundant edges.

• Graph Representation Learning To better capture non-local informa-
tion of the input document, a variety of GNN models are applied in
the NER task and the RE task. In addition, joint learning is a critical
technique to reduce error propagation along the pipeline. For the name
entity recognition task, common GNN models such as GCN (Qian et al.,
2019; Luo and Zhao, 2020) are applied. GCN is the most common GNN
models used in the relation extraction task (Zhang et al., 2019d; Zhang
et al., 2018c; Vashishth et al., 2018; Zeng et al., 2020). To learn edge
type-specific representations, Sahu et al. (2019) introduces a labelled
edge GCN to keep separate parameters for each edge type. Inspired by
the graph attention mechanism, Guo et al. (2019b) proposes attention
guided GCN to prune the irrelevant information from the dependency
trees. Recently, many joint learning models have been proposed to re-
lieve the error propagation in the pipeline IE systems and leverage the
interaction between the NER task and the RE task. Fu et al. (2019)
proposes a GraphRel model containing 2 phases prediction of the enti-
ties and relations. Luan et al. (2019) introduces a general framework to
couple multiple information extraction sub-tasks by sharing entity span
representations which are refined using contextualized information from
relations and co-references. Sun et al. (2019a) develops a paradigm that
first detected entity spans, and then performed a joint inference on entity
types and relation types.

Benchmarks and Evaluation. Common IE benchmark datasets con-
tain NYT (Riedel et al., 2010), WebNLG (Gardent et al., 2017), ACE2004,
ACE2005, SciERC(Luan et al., 2018), TACRED (Zhang et al., 2017b) and
etc. Precision, recall and F1 are the most common evaluation metrics for IE.

0.7. Applications 117

0.7.10 Semantic and Syntactic Parsing

In this section, we mainly discuss applications of GNN for parsing, including
syntax related and semantics related parsing. For syntax related parsing, GNN
has been employed in tasks of dependency parsing(Ji et al., 2019)(Do and
Rehbein, 2020) and constituency parsing(Yang and Deng, 2020). For semantics
related parsing, we will briefly introduce semantic parsing and AMR (Abstract
Meaning Representation) parsing.

Syntax Related Parsing

Background and motivation The tasks related to syntax are mainly
dependency parsing and constituency parsing. Both of them aim to generate a
tree with syntactic structure from natural language sentences, conforming to
predefined formal grammar rules. Dependency parsing focuses on the depen-
dency relationship between words in sentence. Constituency parsing focuses
on the compositional relationship between different components in a sentence.
Traditional approaches can be divided into two directions: transition-based and
graph-based. Transition-based methods(Andor et al., 2016)(Ma et al., 2018)
usually formalize this problem as a series of decisions on how to combine
different words into a syntactic structure. Graph-based methods(Kiperwasser
and Goldberg, 2016)(Dozat and Manning, 2016)(Ji et al., 2019) firstly score
all word pairs in a sentence on the possibility of holding valid dependency
relationship, and then exploit decoders to generate the parse trees.

Methodologies Here, we mainly focus on graph-based parsers where
graph neural network plays the role of extracting high-order neighbor features.

• Dependency parsing. In graph-based parsers, we take each word as
a node in a graph and the key task is to learn a low-dimensional node
representation with a neural encoder. To incorporate more dependency
structure information, Ji et al. (2019) proposes to employ GNN as a
encoder to incorporate high-order information. Their encoder contains
both GNN and Bi-LSTM, where the GNN accepts all node embed-
dings from Bi-LSTM and take them as node embeddings in a complete
graph. The constructed graphs are dynamic graphs where edge weight
can change consistently during training. There are two kinds of loss

118

functions: 1) the first one considers both tree structure and dependency
relation labels; 2) the second one are applied after each GNN layer
where only tree structure is considered. Other than the generation of
dependency parsing trees, some other works focus on how to do rerank-
ing among different candidates to choose a best parsing tree. Do and
Rehbein (2020) demonstrate that GNN can also work well as a encoder
for dependency parsing trees in a neural reranking model.

• Constituency parsing. Most approaches for constituency parsing are
transition-based (Sagae and Lavie, 2005; Dyer et al., 2016; Liu and
Zhang, 2017; Yang and Deng, 2020) which generate the constituency
parsing tree by executing an action sequences. Yang and Deng (2020)
proposes to use GNN to encode the partial tree in the decoding process
which can generate one token per step. Other methods usually generate
the final parsing tree by combining different sub-trees in a shift-reduce
way. The authors believe that this strongly incremental way is more
closer to the way of human thinking.

Benchmark and Evaluation For syntactic parsing, two becnmark datasets
are commonly used, namely, PTB 3.0(Taylor et al., 2003) and UD 2.2(Nivre
et al., 2018). As for evaluation, Accuracy, including exact match accuracy and
execution accuracy, and Smatch score(Cai and Knight, 2013) are commanly
used.

Semantics Related Parsing

Background and Motivation For semantics related tasks, we will in-
troduce two popular applications: SQL parsing and AMR parsing. Semantic
parsing aims to generate machine-interpretable representations from natural
language, like SQL queries. AMR parsing is another young research field.
AMR is represented as a rooted labeled directed acyclic graph form, and the
goal of AMR parsing aims to provide sentence-level semantic representa-
tions. It is widely used in many NLP tasks like text summarization, machine
translation and question answering(Zhou et al., 2020b).

Methodologies Here, we provide a summary of the techniques for two
typical semantic related parsing tasks, namely, SQL parsing and AMR parsing.

0.7. Applications 119

• SQL parsing. The main purpose of SQL parsing is to convert natural
language into SQL queries that can be successfully executed. Most
of the traditional methods (Jia and Liang, 2016; Alvarez-Melis and
Jaakkola, 2016; Dong and Lapata, 2016) are sequential encoder based,
which however, lost some other useful information at the source side,
such as syntax information and DB schema information. Thus, many
GNN-based models are proposed. For syntactic information, Li et al.
(2020a) and Xu et al. (2018c) use external parser to perform syntactic
parsing (i.e., constituency parsing and dependency parsing) on the raw
sentence. Then they exploit the syntactic parsing tree instead of the
source sentence as input, and use GNN to learn the syntactic structure
and dependent information in this "tree" graph. It has been proved
experimentally that the additional syntactic information is helpful for
semantic parsing tasks. SQL parsing problem becomes more complex
if the DB schema of the training and testing set are different (Yu et
al., 2018). To this end, some works propose to model these schema
information to achieve better results. For example, Bogin et al. (2019a)
takes the DB schema as a graph and use GGNN to learn the node
representation. Then they incorporate schema information on both the
encoder and decoder to generate the final results. Bogin et al. (2019b)
employs GNN to globally select the overall structure of the output query
which could decrease the ambiguity of DB constants choice.

After the SQL queries are generated, reranking can be utilized to further
improve the performance. Reranking the candidates predicted by the
model is helpful to reduce the likelihood of picking some sub-optimal
results. SQL queries are structured and it is a reasonable way to use
GNN to encode the SQL queries in the reranking model. For example,
Do and Rehbein (2020) employs graph-based transformer to rearrange
the results generated by the neural semantic parser and achieved good
results.

• AMR parsing. Similar to (Li et al., 2020a)(Xu et al., 2018c), syntac-
tic information, especially dependency relation information, are also
employed in AMR parsing. Zhou et al. (2020b) considers both the de-
pendency syntactic graph and the latent probabilistic graph. Specifically,
by learning a vector representation for the two graph structures and

120

then fusing them together, their model leverages the structure informa-
tion in the source side and achieve better performance compared to
seq-to-graph-like models.

Benchmark and Evaluation For SQL parsing, three benchmark datasets
are commanly used, including ATIS(Dahl et al., 1994), GEO(Luke, 2005),
WikiSQL(Zhong et al., 2017), SPIDER(Yu et al., 2018). For AMR parsing,
AMR annotation release(Knight et al., 2014; Knight et al., 2017) is a well-
recognized dataset. For evaluation metrics, accuracy, including exact match
accuracy and execution accuracy, as well as Smatch score(Cai and Knight,
2013).) are commonly used.

0.7.11 Reasoning

Reasoning is a significant research direction for NLP. In recent years, GNN
begins to play an important role in NLP reasoning tasks, such as math word
problem solving (Li et al., 2020a; Zhang et al., 2020b), natural language
inference (Kapanipathi et al., 2020; Wang et al., 2019f), common sense rea-
soning (Lin et al., 2019a; Zhou et al., 2018a) and so on. In this subsection,
we will give a brief introduction for the three tasks and how graph neural
networks are employed in these methods.

Math word problem solving

Background and Motivation Math word problem solving aims to infer
reasonable equations from given natural language problem descriptions. It is
important for exploring automatic solutions to mathematical problems and
improving the reasoning ability of neural networks. Most of the traditional
methods are based on the seq2seq (Wang et al., 2017) framework to generate
the corresponding equation directly from the source sentence in an end-to-
end manner. This kind of methods ignore some important information in
natural sentences, such as 1) the relationship information between different
mathematical elements (numbers) in the question, 2) the syntax information
in the question sentence, 3) external knowledge, and so on. Thus, GNN-based
models are proposed as a very good way to incorporate this information.

0.7. Applications 121

Methodologies Li et al. (2020a) is the first to introduce GNN into math
word problem solving. Graph2tree considers both the input and output struc-
ture information. At the input side, GNN is used to encode the input syntactic
tree. After all the input nodes embedding are generated, on the output side,
considering the hierarchy of the equation, a BFS-based tree decoder is used to
generate the final equation result in a coarse-to-fine way. Zhang et al. (2020b)
is another MWP automatic solving model that uses graph data structure to
model 1) the relationship between the numbers in the problem, and 2) the rela-
tionship between different numbers with their corresponding descriptors. In
addition, some works introduce the external knowledge information in another
way. For example, Wu et al. (2020b) first connects the entities in the problem
description into graphs based on external global knowledge information, and
then uses GAT as encoder. This method can enhance the ability of modeling
the relationship between the entities in the problem, and has obtained good
results.

Benchmarks and Evaluation For math word problem, three benchmark
datasets are commonly used, including MAWPS (Koncel-Kedziorski et al.,
2016), MATH23K (Wang et al., 2017), and MATHQA (Amini et al., 2019).

Natural language inference

Background and Motivation Natural language inference (NLI) is an-
other fundamental reasoning task. This task aims to predict the relationship be-
tween premise and hypothesis, and is often formalized as a three-classification
problem (contradict, entails, neutral).

Methodologies Traditional methods are mostly based on neural encoder
with attention, and most of them are RNN models(Chen et al., 2017c). Con-
sidering the rich information contained in the external knowledge base, some
works try to use external information to improve the accuracy of the model. For
example, Wang et al. (2019f) uses graph-based attention model to incorporate
the information from introduced external knowledge source. Their experi-
ments demonstrate that adding the learned knowledge graph representation
to the classifier help to obtain good results. Considering the introduced graph
can have noisy information, Kapanipathi et al. (2020) employs a encoder with

122

a subgraph filtering module using Personalized PageRank before a GCN layer
where the filtering module can help to select context relevant sub-graphs from
introduced knowledge graph to reduce noisy information.

Benchmarks and Evaluation For NLI task, three benchmark datasets are
commonly used, including SNLI(Bowman et al., 2015), MultiNLI(Williams
et al., 2018), and SciTail(Khot et al., 2018).

Commonsense reasoning

Background and Motivation Commonsense reasoning helps neural mod-
els incorporate the "common sense" or world knowledge during inference.
Take the commonsense QA as example, we aim to obtain a neural model
tended to generate the answer which is more consistent with commonsense
from multiple answers that all logically fit the requirements. In fact, large-
scale pre-trained models such as GPT-2(Radford et al., 2019), BERT(Devlin
et al., 2019) with simple fine-tuning can achieve very good results. However,
some external knowledge sources can help the model to better characterize the
question and the concepts in the answer, which will definitely help the overall
performance.

Methodologies Lin et al. (2019a) introduces graph neural networks to
the common sense reasoning task. The model first retrieves the concepts in
the questions and options into an external knowledge base to obtain a schema
graph, and then uses GCN to incorporate information from this retrieved
graph to learned features. The learnt features would be fed to a simple score
module for each QA pair. Experiments on large benchmarks dataset, e.g.,
CommonsenseQA (Talmor et al., 2019), demonstrate the effectiveness of the
external knowledge base introduced by GNN.

Benchmarks and Evaluation We introduce some benchmark datasets
for commonsense reasoning here: CommonsenseQA (Talmor et al., 2019);
Event2Mind(Rashkin et al., 2018); SWAG(Zellers et al., 2018); Winograd
Schema Challenge(Levesque et al., 2012); ReCoRD(Zhang et al., 2018a).

0.7. Applications 123

0.7.12 Semantic Role Labelling

Background and Motivation The problem of semantic role labeling
(SRL) aims to recover the predicate-argument structure of a sentence, namely,
to determine essentially “who did what to whom”, “when”, and “where. More
formally, for every predicate, the SRL model must identify all argument spans
and label them with their semantic roles. Such high-level structures can be
used as semantic information for supporting a variety of downstream tasks,
including dialog systems, machine reading and translation (Shen and Lapata,
2007; Liu and Gildea, 2010; Gao and Vogel, 2011). Recent SRL works can
mostly be divided into two categories, i.e., syntax-aware (Xia et al., 2020;
Marcheggiani and Titov, 2020) and syntax-agnostic (He et al., 2017; He et al.,
2018) approaches according to whether incorporating syntactic knowledge
or not. Most syntax-agnostic works employ deep BiLSTM or self-attention
encoder to encode the contextual information of natural sentences, with various
kinds of scorers to predict the probabilities of BIO-based semantic roles (He
et al., 2017) or predicate-argument-role tuples (He et al., 2018). Motivated by
the strong interplay between syntax and semantics, researchers explore various
approaches to integrate syntactic knowledge into syntax-agnostic models
considering that the semantic representations are closely related to syntactic
ones. For example, one can observe that many arcs in the syntactic dependency
graph are mirrored in the semantic dependency graph. Given these similarities
and the availability of accurate syntactic parser for many languages, it seems
natural to exploit syntactic information when predicting semantics.

However, the last generation of SRL models powered by deep learn-
ing models put syntax aside in favor of neural sequence models, namely
LSTMs (Zhou et al., 2020a; Marcheggiani et al., 2017) due to the challenges
that (1) it is difficult to effectively incorporate syntactic information into neural
SRL models, due to the sophisticated tree structure of syntactic relation; and
(2) the syntactic parsers are unreliable on account of the risk of erroneous
syntactic input, which may lead to error propagation and an unsatisfactory
SRL performance. Given this situation, GNNs are emerging as powerful tools
to capture and incorporate the syntax patterns into deep neural network-based
SRL models. The nature property of GNN in capturing the complex relation-
ship patterns in the structured data makes it a good fit for modeling syntactic
dependency and constituency structures of sentences.

124

Methodologies The problem solved by the GNN-based SRL models can
be divided into two categories. One is about argument prediction given the
predicates in a sentence (Marcheggiani and Titov, 2020; Marcheggiani and
Titov, 2017; Li et al., 2018c). Formally, SRL can be cast as a sequence labeling
problem where given an input sentence, and the position of the predicate in the
sentence, the goal is to predict a BIO sequence of semantic roles for the words
in sentences; Another is about end-to-end semantic role triple extraction which
aims to detect all the possible predicates and their corresponding arguments in
one shot (Fei et al., 2020; Xia et al., 2020). Technically, given a sentence, the
SRL model predicts a set of labeled predicate-argument-role triplets, while
each triple contains a possible predicate token and two candidate tokens. Both
of the above mentioned problems can be solved based on the GNN-based SRL
models, which consists of two parts, namely, graph construction and graph
representation learning.

• Graph Construction. The graphs are constructed based on the syntax
information, which can be extracted from two sources, one is syntactic
dependency information and another is syntactic constituents informa-
tion. Most of the existing GNN-SRL models (Li et al., 2018c; Fei et al.,
2020; Marcheggiani and Titov, 2017; Zhang et al., 2020a; Xia et al.,
2020) have relied on syntactic dependency representations. In these
methods, information from dependency trees are injected into word
representations using GNN or self-attention mechanisms. Recently,
Marcheggiani et al (Marcheggiani and Titov, 2020) incorporated the
constituency syntax into SRL models by conducting the message pass-
ing on a graph where nodes represent constituents. Based on the syntax
information, the graphs constructed in the current SRL models are di-
vided into three main categories: (1) directed homogeneous graphs; (2)
heterogeneous graphs; and (3) probability weighted graphs. Most of
the works (Marcheggiani and Titov, 2017; Li et al., 2018c; Fei et al.,
2020) represent the syntax information as a directed homogeneous graph
where all the nodes are input word tokens and directed with dependent
edges. Other work (Xia et al., 2020) enhances SRL with heterogeneous
syntactic knowledge by combining various syntactic treebanks that fol-
low different annotation guidelines and domains. Liu et al. (Liu et al.,
2019c) also construct a heterogeneous syntactic graph by incorporating

0.7. Applications 125

several types of edges, including lexical relationships, syntactic depen-
dency, co-occurrence relationships. Some work (Zhang et al., 2020a)
utilizes the probability matrix of all dependency arcs for constructing
an edge-weighted directed graph to eliminate the influences of the error
from the parsing results.

• Graph Representation Learning. As described in Section 6, various
GNN models can be utilized for graph representation learning. Here, we
introduce the different roles that GNNs play in different SRL models. In
most of the works (Zhang et al., 2020a; Liu et al., 2019c; Marcheggiani
and Titov, 2017; Marcheggiani and Titov, 2020), GNN is utilized as
an encoder to learn the final representations of words which follows
a typical word embedding layer, such as BiLSTM. While in some
works (Xia et al., 2020; Fei et al., 2020), GNN is utilized to extract the
initial words’ embedding, which are regarded as inputs of the encoder.
For example, Xia et al. (Xia et al., 2020) combines the syntax embedding
extracted from GNN with the word embedding and character embedding
as the input. Fei (Fei et al., 2020) utilizes GNN to refine the initial word
embedding which consists of word representation and part-of-speech
(POS) tags, and then input the refined word embedding into the BiLSTM
encoder.

Benchmarks and Evaluation There are two main benchmark datasets
for the evaluation in the domain of SRL: (1) CoNLL dataset concerns the
recognition of semantic roles for the English language, based on PropBank
predicate-argument structures. Given a sentence, the task consists of analyzing
the propositions expressed by some target verbs of the sentence. In particular,
for each target verb all the constituents in the sentence which fill a semantic
role of the verb have to be recognized. (2) Chinese Proposition Bank 1.0
(CPB1.0) which creates a corpus of text annotated with information about
basic semantic propositions (i.e., predicate-argument relations). The typical
evaluation metrics in SLR task are about metrics for classification problem,
such as precision, recall and F1 of the correctly predicted arguments.

126

0.7.13 Related Libraries and Codes

Open-source implementations facilitate the research works of baseline experi-
ments in graph neural networks for NLP. Besides various paper codes were
released individually, there is a recently released library called Graph4NLP 2,
which is an easy-to-use library for R&D at the intersection of Deep Learning
on Graphs and Natural Language Processing. It provides both full implementa-
tions of state-of-the-art models mentioned above for several NLP applications
including text classification, semantic parsing, machine translation, KG com-
pletion, and natural language generation. Graph4NLP also provides flexible
interfaces to build customized models for researchers and developers with
whole-pipeline support. Built upon highly-optimized runtime libraries includ-
ing DGL and Pytorch, Graph4NLP has both high running efficiency and great
extensibility. The architecture of Graph4NLP consists of four different layers:
1) Data Layer, 2) Module Layer, 3) Model Layer, and 4) Application Layer.
There are also some other related GNN-based libraries. Noticeably, Fey and
Lenssen (2019) published a geometric learning library in PyTorch named
PyTorch Geometric, which implements many GNNs. The Deep Graph Library
(DGL) (Wang et al., 2019b) was released which provides a fast implementation
of many GNNs on top of popular deep learning platforms such as PyTorch
and MXNet. The Dive into Graphs (Liu et al., 2021a) was released recently
as a research-oriented library that integrates unified and extensible imple-
mentations of common graph deep learning algorithms for several advanced
tasks.

0.8 General Challenges and Future Directions

In this chapter, we will discuss various general challenges of GNNs for NLP
and pinpoint the future research directions. We believe putting more research
efforts in these directions will further unleash the great potential of GNNs in
the NLP field, and result in fruitful research outcomes.

2The codes and details of Graph4NLP library are provided at https://github.com/graph4ai/
graph4nlp.

https://github.com/graph4ai/graph4nlp
https://github.com/graph4ai/graph4nlp

0.8. General Challenges and Future Directions 127

0.8.1 Dynamic Graph Construction

As we see in Section 0.7, many NLP problems can be tackled from a graph
perspective, and GNNs are naturally applicable to and good at handling graph-
structured data. Thus, the graph construction process plays an important role
in the overall model performance. However, constructing a high quality and
task-specific graph requires a good amount of domain expertise and human
effort. Moreover, graph construction in NLP is often more art than science,
informed solely by insight of the practitioner, and involves many trials and
errors. Even though a few of existing works already explored dynamic graph
construction, most GNN applications in NLP still heavily relied on domain
expertise for static graph construction.

The exploration of dynamic graph construction for NLP, is still at its early
stage and faces several challenges: first of all, most works on dynamic graph
construction focused only on homogeneous graph construction (Chen et al.,
2020i; Chen et al., 2020h; Chen et al., 2020f; Liu et al., 2021b; Liu et al.,
2019c), and dynamic graph construction for heterogeneous graphs (Yun et al.,
2019; Zhao et al., 2021) is much less explored especially for NLP tasks. Com-
pared to homogeneous graphs, heterogeneous graphs are capable of carrying
on richer information on node types and edge types, and occur frequently in
many NLP problems. Dynamic graph construction for heterogeneous graphs
is also supposed to be more challenging because more types of information
(e.g., node types, edge types) are expected to be learned from data.

Second, most existing dynamic graph construction techniques rely on
some form of pair-wise node similarity computation whose time complexity
is at least O(n2) where n is the number of graph nodes. This results in scala-
bility issues when scaling to large graphs such as KGs. Recently, a scalable
graph structure learning approach with linear time and memory complexity
(in terms of the number of nodes) was proposed by adopting the anchor-
based approximation technique to avoid explicit pair-wise node similarity
computation (Chen et al., 2020f).

Finally, various efficient transformers (Tsai et al., 2019; Katharopoulos
et al., 2020; Choromanski et al., 2021; Peng et al., 2021; Shen et al., 2021;
Wang et al., 2020e) were also developed which could inspire the research in
scalable dynamic graph construction considering their close connections; (3)
As observed in some previous works, dynamic graph construction does not

128

clearly outperform static graph construction in some NLP applications. There
is still room for improvement for dynamic graph construction techniques in
terms of downstream task performance. Other interesting future directions
in this line include dynamically learning edge directions for graphs, and
combining static and dynamic graph construction for better performance.

0.8.2 GNNs vs Transformers for NLP

While GNNs have achieved promising results in a large variety of NLP fields,
Transformers have received much more attentions due to excellent perfor-
mance in many NLP applications. However, as we pointed out in the previous
section, Transformers are type of special GNNs, which operated on a fully
connected dynamic graph constructed by employing self-attention mechanism.
Since both of them have their clear advantages over each other, there are
several interesting direction worth exploiting here.

Combining GNNs with Transformers for NLP The most beautiful
thing about Transformers is its simple use of its elegant model architecture
directly on original text sequence, which separates the graph data modeling
inside transformer model from the inputs (and from the end user). However,
the downside of this model choice is that the Transformers cannot directly
operate on more complex data like graph-structured data directly. In contrast,
GNNs are more generic model architectures directly operating on graph data,
which however are needed to be created by the end user with either domain
specific knowledge or other graph modeling techniques. Currently, Graph
Transformers are most popular models that adapt structure-aware self-attention
mechanism to combine the advantages of Transformers and GNNs. However,
these approaches are purely replying on attention mechanism to utilize the
original graph topology information, which may not the best way to explore
the original graph input information, especially when graph inputs are multi-
relational and heterogeneous graphs.

Pre-training GNNs for NLP One of the most important trends in NLP
over the past few years is to develop large-scale pre-trained models (Devlin
et al., 2018; Brown et al., 2020) most of which are based on Transformer
architectures. Recently, there are also many research efforts on pre-training

0.8. General Challenges and Future Directions 129

GNNs on graphs (Hu et al., 2019d; Qiu et al., 2020) using self-supervised
learning methods. However, there are very few attempts to pre-train GNNs
for NLP (He et al., 2020; Sun et al., 2020a; Chen et al., 2020d), which may
exploit more types of data sources than Transformers since GNNs can take
both graph structured data (e.g., from KGs) and unstructured data (e.g., from
free-form text).

0.8.3 Graph-to-Graph for NLP

Since the natural language or information knowledge can be naturally formal-
ized as graphs with a set of nodes and their relationships, many generation
tasks in the domain of NLP can be formalized as a graph transformation prob-
lem, which can further be solved by the graph-to-graph models. In this way,
the semantic structural information of both the input and output sentences can
be fully utilized and captured. For example, the graph-to-graph transformation
for AMR parsing is promising and yet unexplored. Because AMR are naturally
structured objects (e.g. tree structures), currently, many semantic AMR parsing
methods are based on deep graph generative models. These methods (Flanigan
et al., 2014; Zhang et al., 2019f; Cai and Lam, 2020a) represent the semantics
of a sentence as a semantic graph (i.e., a sub-graph of a knowledge base) and
treat semantic parsing as a semantic graph matching/generation process. These
end-to-end deep graph generation techniques for semantic parsing show power-
ful ability in automatically capturing semantic information. However, current
graph-based semantic parsing models only represent either the output AMR or
the input sentence as a graph, without jointly utilize the interactive relationship
in both input and output, and thus can not consider the complex relationship
among the topology pattern of AMR logits and input dependency/constituency
parsing.

While utilizing the graph-to-graph model for NLP tasks, there are several
general challenges that deserve to be explored and solved in this domain: (1)
Difficulty in building an end-to-end graph transformation framework which
can integrate several sub-tasks jointly. For example, it is important to jointly
tackle name entity recognition and relation extraction jointly in the information
extraction; (2) The different concepts of input and output graphs. In NLP tasks,
we usually formalize the dependency tree as the input graph and the output
graph is usually has different concept from the input graph. Thus, both the node

130

set, and topology of the input and output graphs are different. For example, in
AMR parsing, the nodes in output graph are AMR logits, while the nodes in
input graphs are word tokens; (3) Difficulty in addressing the graph sparsity
issue in NLP tasks. For example, AMR parsing is a much harder task in that
the target vocabulary size is much larger, while the size of dataset is much
smaller; (4) Unpaired graph-to-graph transformation. The annotations are
relatively expensive to produce and thus corpora have on the order of tens of
thousands of sentences. Utilizing the unpaired sample pairs is also important
yet challenging.

0.8.4 Knowledge Graph in NLP

Knowledge graph has become an important component in many NLP tasks,
such as question answering, natural language generation, knowledge graph
completion and alignment. It can be either incorporated as an auxiliary informa-
tion besides the input text to provide more knowledge (e.g., KG augmentation),
or as an target object to be learnt or extracted from (e.g., KGE and KGC).

Knowledge Graph Augmentation For many NLP tasks such as QA and
NLG, it is increasingly common to find that the input data not only contain
Query text or source text, but also incorporate KG as auxiliary information
for additional knowledge. There are several challenges with KG-augmented
tasks: (1) There may exist ambiguity when aligning entities in the input
text to entities in KG in some text-to-text generation tasks. For example, a
person name appearing in the input text can correspond to multiple entries
in KG; (2) Since the scale of KG is often large, it takes considerable effort
to extract useful information from the KG and build knowledge subgraphs
which can be directly used by every sample as an auxiliary input. Generally,
detailed and task-specific rules need to be designed for KG node selection; (3)
Entity alignment and knowledge subgraph construction may involve inevitable
errors propagating to the downstream tasks. To make better use of KGs,
the techniques for pre-processing KG, such as entity alignment and related
entity/node selection, need to be further explored and improved.

Knowledge Graph Embedding and Completion GNN-based KGE
and KGC approaches consider incorporating the neighborhood of a head entity

0.8. General Challenges and Future Directions 131

or a tail entity. There is a trade-off between all triples training on the same
large KG (Shang et al., 2019) and each triple training on a separate knowledge
subgraph constructed from the original KG (Teru et al., 2020; Xie et al., 2020).
The former one provides more computational efficiency while the latter one
has more powerful model expressiveness. Future research will focus on jointly
reasoning text and KG by applying such methods and paying attention to
the entities mentioned in the text (Bansal et al., 2019). Logic rules play an
important role to determine whether a triple is valid or not, which may be
useful for KGE and KGC (Xie et al., 2020).

Knowledge Graph Alignment Most of the existing GNN-based KG
alignment models also face three critical challenges to be further explored:
(1) Different KGs usually have heterogeneous schemas, and may mislead the
representation learning , which makes it is difficult to integrate knowledge
from different KGs (Cao et al., 2019b; Wu et al., 2019b); (2) The data in KG
is usually incomplete (Sun et al., 2020b) which needs pre-processing; (3) The
seed alignments are limited (Li et al., 2019). How to iteratively discover new
entity alignments in the GNN-based framework is a future direction (Wang
et al., 2018; Li et al., 2019).

0.8.5 Multi-relational Graph Neural Networks

Multi-relational graphs, which adopt unified nodes but relation-specific edges,
are widely observed and explored in many NLP tasks. As we discussed in
Section 0.5.2, most multi-relational GNNs, which are capable of exploit-
ing multi-relational graphs, are extended from conventional homogeneous
GNNs. Technically, most of them either apply relation-specific parameters
during neighbor aggregation or split the heterogeneous graphs to homoge-
neous sub-graphs (Schlichtkrull et al., 2018; Beck et al., 2018a). Although
impressive progresses have been made, there is still a challenge in handling
over-parameterization problem due to the diverse relations existing in the
graph. Although several tricks such as parameter-sharing (e.g, see Directed-
GCN (Marcheggiani and Titov, 2017)) and matrix-decomposition (e.g., see
R-GCN (Schlichtkrull et al., 2018)) are widely used to enhance the models’
generalization ability to address this issue, they still have limitations, such as
resulting in the potential loss of the models’ expression ability. There is a hard

132

trade-off between the over-parameterization and powerful model expression
ability.

It is worth noting that various graph transformers have been introduced to
exploit the multi-relational graphs (Yao et al., 2020; Wang et al., 2020f). How-
ever, the challenge exists in how to fully take advantage of the strong inductive
bias (i.e., the graph topology) of the graphs by the transformers which are
naturally free of that. Currently, most of them simply regard the self-attention’s
map as a fully-directed graph. On top of that, researchers either apply sparsing
mechanisms (Yao et al., 2020) or allow remote connection (Shaw et al., 2018;
Cai and Lam, 2020b) according to the given graph. How to develop an ef-
fective and general architecture for multi-relational graphs (or heterogeneous
graphs) needs further exploration.

0.9 Conclusions

In this survey, we conduct a comprehensive overview of various graph neu-
ral networks evolving various NLP problems. Specifically, we first provide
the preliminary knowledge of typical GNN models including graph filters
and graph poolings. Then we propose a new taxonomy that systematically
organizes GNNs for NLP approaches along three dimensions, namely, graph
construction, graph representation learning, and the overall encoder-decoder
models. Given these specific techniques at each stage of the NLP application
pipelines, we discuss a wide range of NLP applications from the perspective
of graph construction, graph representation learning, and special techniques.
Finally, the general challenges and future directions in this line are provided
to further unleash the great potential of GNNs in the NLP field.

References

Abbe, E. (2017). “Community detection and stochastic block models: recent
developments”. The Journal of Machine Learning Research. 18(1): 6446–
6531.

Allahyari, M., S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez,
and K. Kochut. (2017). “Text summarization techniques: a brief survey”.
arXiv preprint arXiv:1707.02268.

Allamanis, M., M. Brockschmidt, and M. Khademi. (2018). “Learning to Rep-
resent Programs with Graphs”. In: International Conference on Learning
Representations. URL: https://openreview.net/forum?id=BJOFETxR-.

Alon, U., S. Brody, O. Levy, and E. Yahav. (2018). “code2seq: Generat-
ing sequences from structured representations of code”. arXiv preprint
arXiv:1808.01400.

Alvarez-Melis, D. and T. S. Jaakkola. (2016). “Tree-structured decoding with
doubly-recurrent neural networks”.

Amini, A., S. Gabriel, P. Lin, R. Koncel-Kedziorski, Y. Choi, and H. Hajishirzi.
(2019). “Mathqa: Towards interpretable math word problem solving with
operation-based formalisms”. arXiv preprint arXiv:1905.13319.

133

https://openreview.net/forum?id=BJOFETxR-

134 References

Andor, D., C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev, S. Petrov,
and M. Collins. (2016). “Globally Normalized Transition-Based Neural
Networks”. In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany:
Association for Computational Linguistics. 2442–2452. DOI: 10.18653/
v1/P16-1231. URL: https://www.aclweb.org/anthology/P16-1231.

Angeli, G., M. J. Johnson Premkumar, and C. D. Manning. (2015). “Lever-
aging Linguistic Structure For Open Domain Information Extraction”. In:
Proceedings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Beijing, China: Associa-
tion for Computational Linguistics. 344–354. DOI: 10.3115/v1/P15-1034.
URL: https://www.aclweb.org/anthology/P15-1034.

Atwood, J. and D. Towsley. (2016). “Diffusion-Convolutional Neural Net-
works”. In: Advances in Neural Information Processing Systems. Ed. by
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Vol. 29.
Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper/2016/
file/390e982518a50e280d8e2b535462ec1f-Paper.pdf.

Ba, J. L., J. R. Kiros, and G. E. Hinton. (2016). “Layer normalization”. arXiv
preprint arXiv:1607.06450.

Bahdanau, D., K. Cho, and Y. Bengio. (2015). “Neural Machine Translation by
Jointly Learning to Align and Translate”. In: 3rd International Conference
on Learning Representations. Ed. by Y. Bengio and Y. LeCun.

Bai, X., Y. Chen, L. Song, and Y. Zhang. (2021). “Semantic Representation for
Dialogue Modeling”. In: Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers).
4430–4445.

Bai, X., L. Song, and Y. Zhang. (2020). “Online Back-Parsing for AMR-to-
Text Generation”. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Online: Association
for Computational Linguistics. 1206–1219. DOI: 10.18653/v1/2020.emnlp-
main.92. URL: https://www.aclweb.org/anthology/2020.emnlp-main.92.

https://doi.org/10.18653/v1/P16-1231
https://doi.org/10.18653/v1/P16-1231
https://www.aclweb.org/anthology/P16-1231
https://doi.org/10.3115/v1/P15-1034
https://www.aclweb.org/anthology/P15-1034
https://proceedings.neurips.cc/paper/2016/file/390e982518a50e280d8e2b535462ec1f-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/390e982518a50e280d8e2b535462ec1f-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.92
https://doi.org/10.18653/v1/2020.emnlp-main.92
https://www.aclweb.org/anthology/2020.emnlp-main.92

References 135

Bansal, T., D.-C. Juan, S. Ravi, and A. McCallum. (2019). “A2N: attending
to neighbors for knowledge graph inference”. In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics. 4387–
4392.

Bao, J., D. Tang, N. Duan, Z. Yan, Y. Lv, M. Zhou, and T. Zhao. (2018). “Table-
to-text: Describing table region with natural language”. In: Thirty-Second
AAAI Conference on Artificial Intelligence.

Barone, A. V. M. and R. Sennrich. (2017). “A parallel corpus of Python
functions and documentation strings for automated code documentation
and code generation”. arXiv preprint arXiv:1707.02275.

Bastings, J., I. Titov, W. Aziz, D. Marcheggiani, and K. Sima’an. (2017).
“Graph Convolutional Encoders for Syntax-aware Neural Machine Trans-
lation”. In: Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing. Copenhagen, Denmark: Association for
Computational Linguistics. 1957–1967. DOI: 10.18653/v1/D17-1209.
URL: https://www.aclweb.org/anthology/D17-1209.

Beck, D., G. Haffari, and T. Cohn. (2018a). “Graph-to-Sequence Learning
using Gated Graph Neural Networks”. In: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Melbourne, Australia: Association for Computational Linguistics.
273–283. DOI: 10.18653/v1/P18-1026. URL: https://www.aclweb.org/
anthology/P18-1026.

Beck, D., G. Haffari, and T. Cohn. (2018b). “Graph-to-Sequence Learning
using Gated Graph Neural Networks”. In: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 273–283.

Bengio, S., O. Vinyals, N. Jaitly, and N. Shazeer. (2015). “Scheduled Sampling
for Sequence Prediction with Recurrent Neural Networks”. In: Advances
in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015, Mon-
treal, Quebec, Canada. Ed. by C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett. 1171–1179. URL: https : / / proceedings .
neurips . cc / paper / 2015 / hash / e995f98d56967d946471af29d7bf99f1 -
Abstract.html.

https://doi.org/10.18653/v1/D17-1209
https://www.aclweb.org/anthology/D17-1209
https://doi.org/10.18653/v1/P18-1026
https://www.aclweb.org/anthology/P18-1026
https://www.aclweb.org/anthology/P18-1026
https://proceedings.neurips.cc/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html

136 References

Blei, D. M., T. L. Griffiths, and M. I. Jordan. (2010). “The nested chinese
restaurant process and bayesian nonparametric inference of topic hierar-
chies”. Journal of the ACM (JACM). 57(2): 1–30.

Blei, D. M., A. Y. Ng, and M. I. Jordan. (2003). “Latent dirichlet allocation”.
the Journal of machine Learning research. 3: 993–1022.

Blitzer, J., M. Dredze, and F. Pereira. (2007). “Biographies, bollywood, boom-
boxes and blenders: Domain adaptation for sentiment classification”. In:
Proceedings of the 45th annual meeting of the association of computational
linguistics. 440–447.

Bogin, B., J. Berant, and M. Gardner. (2019a). “Representing Schema Struc-
ture with Graph Neural Networks for Text-to-SQL Parsing”. In: Proceed-
ings of the 57th Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computational Linguistics.
4560–4565. DOI: 10.18653/v1/P19-1448. URL: https://www.aclweb.org/
anthology/P19-1448.

Bogin, B., M. Gardner, and J. Berant. (2019b). “Global Reasoning over
Database Structures for Text-to-SQL Parsing”. In: Proceedings of the
2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Com-
putational Linguistics. 3659–3664. DOI: 10.18653/v1/D19-1378. URL:
https://www.aclweb.org/anthology/D19-1378.

Bordes, A., N. Usunier, S. Chopra, and J. Weston. (2015). “Large-scale simple
question answering with memory networks”. arXiv preprint arXiv:1506.02075.

Bordes, A., N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko.
(2013). “Translating embeddings for modeling multi-relational data”. In:
Neural Information Processing Systems (NIPS). 1–9.

Bowman, S. R., G. Angeli, C. Potts, and C. D. Manning. (2015). “A large
annotated corpus for learning natural language inference”. arXiv preprint
arXiv:1508.05326.

Brown, T. B., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. (2020). “Language
models are few-shot learners”. arXiv preprint arXiv:2005.14165.

Budzianowski, P., T.-H. Wen, B.-H. Tseng, I. Casanueva, S. Ultes, O. Ramadan,
and M. Gasic. (2018). “MultiWOZ-A Large-Scale Multi-Domain Wizard-
of-Oz Dataset for Task-Oriented Dialogue Modelling”. In: EMNLP.

https://doi.org/10.18653/v1/P19-1448
https://www.aclweb.org/anthology/P19-1448
https://www.aclweb.org/anthology/P19-1448
https://doi.org/10.18653/v1/D19-1378
https://www.aclweb.org/anthology/D19-1378

References 137

Cai, D. and W. Lam. (2020a). “AMR Parsing via Graph-Sequence Iterative
Inference”. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Online: Association for Computational
Linguistics. 1290–1301. DOI: 10.18653/v1/2020.acl- main.119. URL:
https://www.aclweb.org/anthology/2020.acl-main.119.

Cai, D. and W. Lam. (2020b). “Graph Transformer for Graph-to-Sequence
Learning”. In: The Thirty-Fourth AAAI Conference on Artificial Intelli-
gence. AAAI Press. 7464–7471.

Cai, D. and W. Lam. (2020c). “Graph Transformer for Graph-to-Sequence
Learning”. Proceedings of the AAAI Conference on Artificial Intelligence.
34(05): 7464–7471. DOI: 10.1609/aaai.v34i05.6243. URL: https://ojs.aaai.
org/index.php/AAAI/article/view/6243.

Cai, S. and K. Knight. (2013). “Smatch: an Evaluation Metric for Semantic
Feature Structures”. In: Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers). Sofia,
Bulgaria: Association for Computational Linguistics. 748–752. URL: https:
//www.aclweb.org/anthology/P13-2131.

Campos, J. A., A. Otegi, A. Soroa, J. Deriu, M. Cieliebak, and E. Agirre.
(2019). “Conversational qa for faqs”. In: 3rd Conversational AI:“Today’s
Practice and Tomorrow’s Potential” workshop.

Cao, N. D., W. Aziz, and I. Titov. (2019a). “Question Answering by Reasoning
Across Documents with Graph Convolutional Networks”. In: Proceedings
of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers). Ed. by J. Burstein, C. Doran, and T. Solorio. Association
for Computational Linguistics. 2306–2317.

Cao, Y., Z. Liu, C. Li, J. Li, and T.-S. Chua. (2019b). “Multi-Channel Graph
Neural Network for Entity Alignment”. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. 1452–1461.

https://doi.org/10.18653/v1/2020.acl-main.119
https://www.aclweb.org/anthology/2020.acl-main.119
https://doi.org/10.1609/aaai.v34i05.6243
https://ojs.aaai.org/index.php/AAAI/article/view/6243
https://ojs.aaai.org/index.php/AAAI/article/view/6243
https://www.aclweb.org/anthology/P13-2131
https://www.aclweb.org/anthology/P13-2131

138 References

Cao, Y., M. Fang, and D. Tao. (2019c). “BAG: Bi-directional Attention Entity
Graph Convolutional Network for Multi-hop Reasoning Question An-
swering”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers). Association for Computational
Linguistics. 357–362.

Casanueva, I., P. Budzianowski, P.-H. Su, N. Mrkšic, T.-H. Wen, S. Ultes,
L. Rojas-Barahona, S. Young, and M. Gašic. (2017). “A Benchmarking
Environment for Reinforcement Learning Based Task Oriented Dialogue
Management”. stat. 1050: 29.

Chen, C., Z. Teng, and Y. Zhang. (2020a). “Inducing target-specific latent
structures for aspect sentiment classification”. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). 5596–5607.

Chen, D., A. Fisch, J. Weston, and A. Bordes. (2017a). “Reading wikipedia to
answer open-domain questions”. arXiv preprint arXiv:1704.00051.

Chen, H., X. Liu, D. Yin, and J. Tang. (2017b). “A survey on dialogue systems:
Recent advances and new frontiers”. Acm Sigkdd Explorations Newsletter.
19(2): 25–35.

Chen, J., Q. Chen, X. Liu, H. Yang, D. Lu, and B. Tang. (2018a). “The bq cor-
pus: A large-scale domain-specific chinese corpus for sentence semantic
equivalence identification”. In: Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. 4946–4951.

Chen, L., B. Lv, C. Wang, S. Zhu, B. Tan, and K. Yu. (2020b). “Schema-
Guided Multi-Domain Dialogue State Tracking with Graph Attention
Neural Networks”. In: The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020. AAAI Press. 7521–7528.

Chen, L., B. Tan, S. Long, and K. Yu. (2018b). “Structured Dialogue Policy
with Graph Neural Networks”. In: Proceedings of the 27th International
Conference on Computational Linguistics, COLING 2018, Santa Fe, New
Mexico, USA, August 20-26, 2018. Ed. by E. M. Bender, L. Derczynski,
and P. Isabelle. Association for Computational Linguistics. 1257–1268.

References 139

Chen, L., Y. Zhao, B. Lyu, L. Jin, Z. Chen, S. Zhu, and K. Yu. (2020c). “Neural
Graph Matching Networks for Chinese Short Text Matching”. In: Pro-
ceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020. Ed. by D. Jurafsky, J. Chai,
N. Schluter, and J. R. Tetreault. Association for Computational Linguistics.
6152–6158.

Chen, Q., X. Zhu, Z.-H. Ling, D. Inkpen, and S. Wei. (2017c). “Neural natural
language inference models enhanced with external knowledge”. arXiv
preprint arXiv:1711.04289.

Chen, W., Y. Su, X. Yan, and W. Y. Wang. (2020d). “KGPT: Knowledge-
Grounded Pre-Training for Data-to-Text Generation”. In: Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2020, Online, November 16-20, 2020. Association for
Computational Linguistics. 8635–8648.

Chen, X., C. Sun, J. Wang, S. Li, L. Si, M. Zhang, and G. Zhou. (2020e). “As-
pect Sentiment Classification with Document-level Sentiment Preference
Modeling”. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Online: Association for Computational
Linguistics. 3667–3677. DOI: 10.18653/v1/2020.acl- main.338. URL:
https://www.aclweb.org/anthology/2020.acl-main.338.

Chen, Y., L. Wu, and M. J. Zaki. (2019). “Bidirectional Attentive Memory
Networks for Question Answering over Knowledge Bases”. In: NAACL-
HLT (1).

Chen, Y., L. Wu, and M. J. Zaki. (2020f). “Iterative Deep Graph Learning
for Graph Neural Networks: Better and Robust Node Embeddings”. In:
Proceedings of the 34th Conference on Neural Information Processing
Systems.

Chen, Y., L. Wu, and M. J. Zaki. (2020g). “Toward Subgraph Guided Knowl-
edge Graph Question Generation with Graph Neural Networks”. arXiv
preprint arXiv:2004.06015.

Chen, Y., L. Wu, and M. J. Zaki. (2020h). “GraphFlow: Exploiting Conver-
sation Flow with Graph Neural Networks for Conversational Machine
Comprehension”. In: Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI 2020. ijcai.org. 1230–1236.

https://doi.org/10.18653/v1/2020.acl-main.338
https://www.aclweb.org/anthology/2020.acl-main.338

140 References

Chen, Y., L. Wu, and M. J. Zaki. (2020i). “Reinforcement Learning Based
Graph-to-Sequence Model for Natural Question Generation”. In: Proceed-
ings of the 8th International Conference on Learning Representations.

Chen, Y. and M. J. Zaki. (2017). “Kate: K-competitive autoencoder for text”.
In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 85–94.

Cho, K., B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H.
Schwenk, and Y. Bengio. (2014). “Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine Translation”. In: Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting
of SIGDAT, a Special Interest Group of the ACL. Ed. by A. Moschitti, B.
Pang, and W. Daelemans. ACL. 1724–1734. DOI: 10.3115/v1/d14-1179.
URL: https://doi.org/10.3115/v1/d14-1179.

Choi, E., H. He, M. Iyyer, M. Yatskar, W. T. Yih, Y. Choi, P. Liang, and
L. Zettlemoyer. (2020). “QUAC: Question answering in context”. In:
2018 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2018. Association for Computational Linguistics. 2174–2184.

Choromanski, K., V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlós,
P. Hawkins, J. Davis, A. Mohiuddin, L. Kaiser, D. Belanger, L. Colwell,
and A. Weller. (2021). “Rethinking Attention with Performers”. In: Inter-
national Conference on Learning Representations.

Christensen, J., S. Soderland, O. Etzioni, et al. (2013). “Towards coherent
multi-document summarization”. In: Proceedings of the 2013 conference
of the North American chapter of the association for computational lin-
guistics: Human language technologies. 1163–1173.

Christopoulou, F., M. Miwa, and S. Ananiadou. (2019). “Connecting the
Dots: Document-level Neural Relation Extraction with Edge-oriented
Graphs”. In: Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics. 4925–4936. DOI: 10.18653/
v1/D19-1498. URL: https://www.aclweb.org/anthology/D19-1498.

Collins-Thompson, K. and J. Callan. (2005). “Query expansion using random
walk models”. In: Proceedings of the 14th ACM international conference
on Information and knowledge management. 704–711.

https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.18653/v1/D19-1498
https://doi.org/10.18653/v1/D19-1498
https://www.aclweb.org/anthology/D19-1498

References 141

Cui, L., Y. Wu, S. Liu, Y. Zhang, and M. Zhou. (2020a). “MuTual: A Dataset
for Multi-Turn Dialogue Reasoning”. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. 1406–1416.

Cui, P., L. Hu, and Y. Liu. (2020b). “Enhancing Extractive Text Summarization
with Topic-Aware Graph Neural Networks”. arXiv preprint arXiv:2010.06253.

Cui, S., B. Yu, T. Liu, Z. Zhang, X. Wang, and J. Shi. (2020c). “Edge-Enhanced
Graph Convolution Networks for Event Detection with Syntactic Relation”.
In: Findings of the Association for Computational Linguistics: EMNLP
2020. Online: Association for Computational Linguistics. 2329–2339. DOI:
10.18653/v1/2020.findings-emnlp.211. URL: https://www.aclweb.org/
anthology/2020.findings-emnlp.211.

Cui, Y., Z. Chen, S. Wei, S. Wang, T. Liu, and G. Hu. (2017). “Attention-
over-Attention Neural Networks for Reading Comprehension”. In: ACL
(1).

Dahl, D. A., M. Bates, M. Brown, W. Fisher, K. Hunicke-Smith, D. Pallett,
C. Pao, A. Rudnicky, and E. Shriberg. (1994). “Expanding the Scope of
the ATIS Task: The ATIS-3 Corpus”. In: Human Language Technology:
Proceedings of a Workshop held at Plainsboro, New Jersey, March 8-11,
1994. URL: https://www.aclweb.org/anthology/H94-1010.

Damonte, M. and S. B. Cohen. (2019). “Structural Neural Encoders for AMR-
to-text Generation”. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers). Min-
neapolis, Minnesota: Association for Computational Linguistics. 3649–
3658. DOI: 10.18653/v1/N19- 1366. URL: https: / /www.aclweb.org/
anthology/N19-1366.

De Cao, N., W. Aziz, and I. Titov. (2018). “Question answering by reasoning
across documents with graph convolutional networks”.

Defferrard, M., X. Bresson, and P. Vandergheynst. (2016). “Convolutional
neural networks on graphs with fast localized spectral filtering”. Advances
in neural information processing systems. 29.

Dettmers, T., P. Minervini, P. Stenetorp, and S. Riedel. (2018a). “Convolu-
tional 2d knowledge graph embeddings”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 32. No. 1.

https://doi.org/10.18653/v1/2020.findings-emnlp.211
https://www.aclweb.org/anthology/2020.findings-emnlp.211
https://www.aclweb.org/anthology/2020.findings-emnlp.211
https://www.aclweb.org/anthology/H94-1010
https://doi.org/10.18653/v1/N19-1366
https://www.aclweb.org/anthology/N19-1366
https://www.aclweb.org/anthology/N19-1366

142 References

Dettmers, T., M. Pasquale, S. Pontus, and S. Riedel. (2018b). “Convolutional
2D Knowledge Graph Embeddings”. In: Proceedings of the 32th AAAI
Conference on Artificial Intelligence. 1811–1818. URL: https://arxiv.org/
abs/1707.01476.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. (2018). “Bert: Pre-training
of deep bidirectional transformers for language understanding”. arXiv
preprint arXiv:1810.04805.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. (2019). “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understand-
ing”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics. 4171–4186. DOI:
10.18653/v1/N19-1423. URL: https://www.aclweb.org/anthology/N19-
1423.

Ding, M., C. Zhou, Q. Chen, H. Yang, and J. Tang. (2019a). “Cognitive Graph
for Multi-Hop Reading Comprehension at Scale”. In: Proceedings of the
57th Conference of the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers.
Ed. by A. Korhonen, D. R. Traum, and L. Màrquez. Association for
Computational Linguistics. 2694–2703.

Ding, R., P. Xie, X. Zhang, W. Lu, L. Li, and L. Si. (2019b). “A Neural Multi-
digraph Model for Chinese NER with Gazetteers”. In: Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics. 1462–1467.
DOI: 10.18653/v1/P19-1141. URL: https://www.aclweb.org/anthology/
P19-1141.

Do, B.-N. and I. Rehbein. (2020). “Neural Reranking for Dependency Pars-
ing: An Evaluation”. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online: Association for Com-
putational Linguistics. 4123–4133. DOI: 10.18653/v1/2020.acl-main.379.
URL: https://www.aclweb.org/anthology/2020.acl-main.379.

Do, K., T. Tran, and S. Venkatesh. (2019). “Graph transformation policy
network for chemical reaction prediction”. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 750–760.

https://arxiv.org/abs/1707.01476
https://arxiv.org/abs/1707.01476
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.18653/v1/P19-1141
https://www.aclweb.org/anthology/P19-1141
https://www.aclweb.org/anthology/P19-1141
https://doi.org/10.18653/v1/2020.acl-main.379
https://www.aclweb.org/anthology/2020.acl-main.379

References 143

Dong, L. and M. Lapata. (2016). “Language to Logical Form with Neural
Attention”. In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany:
Association for Computational Linguistics. 33–43. DOI: 10.18653/v1/P16-
1004. URL: https://www.aclweb.org/anthology/P16-1004.

Dong, L., F. Wei, C. Tan, D. Tang, M. Zhou, and K. Xu. (2014). “Adaptive
recursive neural network for target-dependent twitter sentiment classifica-
tion”. In: Proceedings of the 52nd annual meeting of the association for
computational linguistics (volume 2: Short papers). 49–54.

Dozat, T. and C. D. Manning. (2016). “Deep biaffine attention for neural
dependency parsing”. arXiv preprint arXiv:1611.01734.

Du, X., J. Shao, and C. Cardie. (2017). “Learning to Ask: Neural Question
Generation for Reading Comprehension”. In: ACL (1).

Dua, D., Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gardner. (2019).
“DROP: A Reading Comprehension Benchmark Requiring Discrete Rea-
soning Over Paragraphs”. In: Proceedings of NAACL-HLT. 2368–2378.

Dyer, C., A. Kuncoro, M. Ballesteros, and N. A. Smith. (2016). “Recurrent
Neural Network Grammars”. In: Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. San Diego, California: Association for
Computational Linguistics. 199–209. DOI: 10.18653/v1/N16-1024. URL:
https://www.aclweb.org/anthology/N16-1024.

Edouard, A., E. Cabrio, S. Tonelli, and N. Le-Thanh. (2017). “Graph-based
Event Extraction from Twitter”. In: Proceedings of the International
Conference Recent Advances in Natural Language Processing, RANLP
2017. Varna, Bulgaria: INCOMA Ltd. 222–230. DOI: 10.26615/978-954-
452-049-6_031. URL: https://doi.org/10.26615/978-954-452-049-6_031.

Elliott, D., S. Frank, K. Sima’an, and L. Specia. (2016). “Multi30K: Mul-
tilingual English-German Image Descriptions”. In: Proceedings of the
5th Workshop on Vision and Language. Berlin, Germany: Association for
Computational Linguistics. 70–74. DOI: 10.18653/v1/W16-3210. URL:
https://www.aclweb.org/anthology/W16-3210.

Eric, M., R. Goel, S. Paul, A. Sethi, S. Agarwal, S. Gao, A. Kumar, A. K.
Goyal, P. Ku, and D. Hakkani-Tür. (2020). “MultiWOZ 2.1: A Consoli-
dated Multi-Domain Dialogue Dataset with State Corrections and State
Tracking Baselines”. In: LREC.

https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://www.aclweb.org/anthology/P16-1004
https://doi.org/10.18653/v1/N16-1024
https://www.aclweb.org/anthology/N16-1024
https://doi.org/10.26615/978-954-452-049-6_031
https://doi.org/10.26615/978-954-452-049-6_031
https://doi.org/10.26615/978-954-452-049-6_031
https://doi.org/10.18653/v1/W16-3210
https://www.aclweb.org/anthology/W16-3210

144 References

Eriguchi, A., K. Hashimoto, and Y. Tsuruoka. (2016). “Tree-to-Sequence
Attentional Neural Machine Translation”. In: ACL (1).

Erkan, G. (2006). “Language model-based document clustering using random
walks”. In: Proceedings of the Human Language Technology Conference
of the NAACL, Main Conference. 479–486.

Fabbri, A. R., I. Li, T. She, S. Li, and D. R. Radev. (2019). “Multi-news: A
large-scale multi-document summarization dataset and abstractive hierar-
chical model”. arXiv preprint arXiv:1906.01749.

Fan, S., J. Zhu, X. Han, C. Shi, L. Hu, B. Ma, and Y. Li. (2019). “Metapath-
guided heterogeneous graph neural network for intent recommendation”.
In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 2478–2486.

Fancellu, F., S. Gilroy, A. Lopez, and M. Lapata. (2019). “Semantic graph
parsing with recurrent neural network DAG grammars”. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). 2769–2778.

Fang, Y., S. Sun, Z. Gan, R. Pillai, S. Wang, and J. Liu. (2020a). “Hierarchical
Graph Network for Multi-hop Question Answering”. In: Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP). 8823–8838.

Fang, Y., S. Sun, Z. Gan, R. Pillai, S. Wang, and J. Liu. (2020b). “Hierarchical
Graph Network for Multi-hop Question Answering”. In: Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Process-
ing, EMNLP 2020, Online, November 16-20, 2020. Ed. by B. Webber,
T. Cohn, Y. He, and Y. Liu. Association for Computational Linguistics.
8823–8838.

Fei, H., M. Zhang, F. Li, and D. Ji. (2020). “Cross-lingual semantic role
labeling with model transfer”. IEEE/ACM Transactions on Audio, Speech,
and Language Processing. 28: 2427–2437.

Feng, Y., X. Chen, B. Y. Lin, P. Wang, J. Yan, and X. Ren. (2020a). “Scal-
able Multi-Hop Relational Reasoning for Knowledge-Aware Question
Answering”. arXiv preprint arXiv:2005.00646.

References 145

Feng, Y., X. Chen, B. Y. Lin, P. Wang, J. Yan, and X. Ren. (2020b). “Scalable
Multi-Hop Relational Reasoning for Knowledge-Aware Question Answer-
ing”. In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, Online, November 16-20,
2020. Ed. by B. Webber, T. Cohn, Y. He, and Y. Liu. Association for
Computational Linguistics. 1295–1309.

Fernandes, P., M. Allamanis, and M. Brockschmidt. (2019). “Structured Neural
Summarization”. In: International Conference on Learning Representa-
tions. URL: https://openreview.net/forum?id=H1ersoRqtm.

Ferreira, D. and A. Freitas. (2020). “Premise Selection in Natural Language
Mathematical Texts”. In: Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Online: Association for
Computational Linguistics. 7365–7374. DOI: 10 .18653/v1/2020.acl -
main.657. URL: https://www.aclweb.org/anthology/2020.acl-main.657.

Fey, M. and J. E. Lenssen. (2019). “Fast graph representation learning with
PyTorch Geometric”. arXiv preprint arXiv:1903.02428.

Flanigan, J., S. Thomson, J. G. Carbonell, C. Dyer, and N. A. Smith. (2014).
“A discriminative graph-based parser for the abstract meaning representa-
tion”. In: Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 1426–1436.

Franceschi, L., M. Niepert, M. Pontil, and X. He. “Learning Discrete Structures
for Graph Neural Networks”. In: Proceedings of the 36th International
Conference on Machine, volume = 97, pages = 1972–1982, year = 2019.

Fu, Q., L. Song, W. Du, and Y. Zhang. (2021). “End-to-End AMR Coreference
Resolution”. In: Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers). 4204–4214.

Fu, T.-J., P.-H. Li, and W.-Y. Ma. (2019). “GraphRel: Modeling text as rela-
tional graphs for joint entity and relation extraction”. In: Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics.
1409–1418.

Gao, H., L. Wu, P. Hu, and F. Xu. (2020). “RDF-to-Text Generation with
Graph-augmented Structural Neural Encoders”. In: Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI-20. International Joint Conferences on Artificial Intelligence Orga-
nization. 3030–3036.

https://openreview.net/forum?id=H1ersoRqtm
https://doi.org/10.18653/v1/2020.acl-main.657
https://doi.org/10.18653/v1/2020.acl-main.657
https://www.aclweb.org/anthology/2020.acl-main.657

146 References

Gao, H., Y. Chen, and S. Ji. (2019). “Learning graph pooling and hybrid
convolutional operations for text representations”. In: The World Wide
Web Conference. 2743–2749.

Gao, Q. and S. Vogel. (2011). “Corpus expansion for statistical machine
translation with semantic role label substitution rules”. In: Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies. 294–298.

Gardent, C., A. Shimorina, S. Narayan, and L. Perez-Beltrachini. (2017).
“Creating Training Corpora for NLG Micro-Planners”. In: Proceedings
of the 55th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Vancouver, Canada: Association for
Computational Linguistics. 179–188. DOI: 10.18653/v1/P17-1017. URL:
http://www.aclweb.org/anthology/P17-1017.

Gehring, J., M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. (2017). “Con-
volutional sequence to sequence learning”. In: International Conference
on Machine Learning. PMLR. 1243–1252.

Gehrmann, S., Y. Deng, and A. M. Rush. (2018). “Bottom-up abstractive
summarization”. arXiv preprint arXiv:1808.10792.

Ghosal, D., D. Hazarika, A. Roy, N. Majumder, R. Mihalcea, and S. Po-
ria. (2020). “KinGDOM: Knowledge-Guided DOMain Adaptation for
Sentiment Analysis”. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online: Association for Com-
putational Linguistics. 3198–3210. DOI: 10.18653/v1/2020.acl-main.292.
URL: https://www.aclweb.org/anthology/2020.acl-main.292.

Gilmer, J., S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. (2017).
“Neural message passing for quantum chemistry”. In: Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR.
org. 1263–1272.

Goldberg, A. B. and X. Zhu. (2006). “Seeing stars when there aren’t many
stars: Graph-based semi-supervised learning for sentiment categorization”.
In: Proceedings of TextGraphs: The first workshop on graph based methods
for natural language processing. 45–52.

https://doi.org/10.18653/v1/P17-1017
http://www.aclweb.org/anthology/P17-1017
https://doi.org/10.18653/v1/2020.acl-main.292
https://www.aclweb.org/anthology/2020.acl-main.292

References 147

Gómez-Bombarelli, R., J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato,
B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel,
R. P. Adams, and A. Aspuru-Guzik. (2018). “Automatic chemical design
using a data-driven continuous representation of molecules”. ACS central
science. 4(2): 268–276.

Gu, J., Z. Lu, H. Li, and V. O. Li. (2016). “Incorporating copying mechanism
in sequence-to-sequence learning”. arXiv preprint arXiv:1603.06393.

Gui, T., Y. Zou, Q. Zhang, M. Peng, J. Fu, Z. Wei, and X. Huang. (2019). “A
Lexicon-Based Graph Neural Network for Chinese NER”. In: Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP). Hong Kong, China: Association for
Computational Linguistics. 1040–1050. DOI: 10.18653/v1/D19-1096.
URL: https://www.aclweb.org/anthology/D19-1096.

Guo, X., L. Wu, and L. Zhao. (2018). “Deep graph translation”. arXiv preprint
arXiv:1805.09980.

Guo, X., L. Zhao, C. Nowzari, S. Rafatirad, H. Homayoun, and S. M. P.
Dinakarrao. (2019a). “Deep multi-attributed graph translation with node-
Edge Co-evolution”. In: 2019 IEEE International Conference on Data
Mining (ICDM). IEEE. 250–259.

Guo, Z., Y. Zhang, and W. Lu. (2019b). “Attention Guided Graph Convo-
lutional Networks for Relation Extraction”. In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics. Flo-
rence, Italy: Association for Computational Linguistics. 241–251. DOI:
10.18653/v1/P19-1024. URL: https://www.aclweb.org/anthology/P19-
1024.

Guo, Z., Y. Zhang, Z. Teng, and W. Lu. (2019c). “Densely Connected Graph
Convolutional Networks for Graph-to-Sequence Learning”. Transactions
of the Association for Computational Linguistics. 7(Mar.): 297–312. DOI:
10.1162/tacl_a_00269. URL: https://www.aclweb.org/anthology/Q19-
1019.

https://doi.org/10.18653/v1/D19-1096
https://www.aclweb.org/anthology/D19-1096
https://doi.org/10.18653/v1/P19-1024
https://www.aclweb.org/anthology/P19-1024
https://www.aclweb.org/anthology/P19-1024
https://doi.org/10.1162/tacl_a_00269
https://www.aclweb.org/anthology/Q19-1019
https://www.aclweb.org/anthology/Q19-1019

148 References

Gupta, S., S. Kenkre, and P. Talukdar. (2019). “CaRe: Open Knowledge
Graph Embeddings”. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). Hong
Kong, China: Association for Computational Linguistics. 378–388. DOI:
10.18653/v1/D19-1036. URL: https://www.aclweb.org/anthology/D19-
1036.

Haghighi, A., A. Y. Ng, and C. D. Manning. (2005). “Robust textual inference
via graph matching”. In: Proceedings of Human Language Technology
Conference and Conference on Empirical Methods in Natural Language
Processing. 387–394.

Hamilton, W., Z. Ying, and J. Leskovec. (2017a). “Inductive representation
learning on large graphs”. In: Advances in Neural Information Processing
Systems. 1024–1034.

Hamilton, W. L., R. Ying, and J. Leskovec. (2017b). “Representation learning
on graphs: Methods and applications”. arXiv preprint arXiv:1709.05584.

Han, J., B. Cheng, and X. Wang. (2020). “Open Domain Question Answering
based on Text Enhanced Knowledge Graph with Hyperedge Infusion”.
In: Findings of the Association for Computational Linguistics: EMNLP
2020. Online: Association for Computational Linguistics. 1475–1481. DOI:
10.18653/v1/2020.findings-emnlp.133. URL: https://www.aclweb.org/
anthology/2020.findings-emnlp.133.

Hashimoto, K. and Y. Tsuruoka. (2017). “Neural Machine Translation with
Source-Side Latent Graph Parsing”. In: Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Processing. Copenhagen,
Denmark: Association for Computational Linguistics. 125–135. DOI: 10.
18653/v1/D17-1012. URL: https://www.aclweb.org/anthology/D17-1012.

Haveliwala, T. H. (2002). “Topic-Sensitive PageRank”. In: Proceedings of the
11th International Conference on World Wide Web. WWW ’02. Honolulu,
Hawaii, USA: Association for Computing Machinery. 517–526. ISBN:
1581134495. DOI: 10.1145/511446.511513. URL: https://doi.org/10.1145/
511446.511513.

https://doi.org/10.18653/v1/D19-1036
https://www.aclweb.org/anthology/D19-1036
https://www.aclweb.org/anthology/D19-1036
https://doi.org/10.18653/v1/2020.findings-emnlp.133
https://www.aclweb.org/anthology/2020.findings-emnlp.133
https://www.aclweb.org/anthology/2020.findings-emnlp.133
https://doi.org/10.18653/v1/D17-1012
https://doi.org/10.18653/v1/D17-1012
https://www.aclweb.org/anthology/D17-1012
https://doi.org/10.1145/511446.511513
https://doi.org/10.1145/511446.511513
https://doi.org/10.1145/511446.511513

References 149

He, B., D. Zhou, J. Xiao, X. Jiang, Q. Liu, N. J. Yuan, and T. Xu. (2020).
“Integrating Graph Contextualized Knowledge into Pre-trained Language
Models”. In: Findings of the Association for Computational Linguistics:
EMNLP 2020, Online Event, 16-20 November 2020. Vol. EMNLP 2020.
Findings of ACL. Association for Computational Linguistics. 2281–2290.

He, L., K. Lee, O. Levy, and L. Zettlemoyer. (2018). “Jointly predicting
predicates and arguments in neural semantic role labeling”. arXiv preprint
arXiv:1805.04787.

He, L., K. Lee, M. Lewis, and L. Zettlemoyer. (2017). “Deep semantic role
labeling: What works and what’s next”. In: Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 473–483.

Henaff, M., J. Bruna, and Y. LeCun. (2015). “Deep convolutional networks on
graph-structured data”. arXiv preprint arXiv:1506.05163.

Hermann, K. M., T. Kociskỳ, E. Grefenstette, L. Espeholt, W. Kay, M. Suley-
man, and P. Blunsom. (2015). “Teaching Machines to Read and Compre-
hend”. In: NIPS.

Hersh, W., C. Buckley, T. Leone, and D. Hickam. (1994). “OHSUMED: An
interactive retrieval evaluation and new large test collection for research”.
In: SIGIR’94. Springer. 192–201.

Hochreiter, S. and J. Schmidhuber. (1997). “Long short-term memory”. Neural
computation. 9(8): 1735–1780.

Hoffman, M. D., D. M. Blei, C. Wang, and J. Paisley. (2013). “Stochastic
variational inference”. The Journal of Machine Learning Research. 14(1):
1303–1347.

Hofmann, T. (1999). “Probabilistic latent semantic indexing”. In: Proceedings
of the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval. 50–57.

Hu, B., Z. Lu, H. Li, and Q. Chen. (2014). “Convolutional Neural Network
Architectures for Matching Natural Language Sentences”. In: NIPS.

Hu, J., Q. Fang, S. Qian, and C. Xu. (2020a). “Multi-Modal Attentive Graph
Pooling Model for Community Question Answer Matching”. In: Proceed-
ings of the 28th ACM International Conference on Multimedia. MM ’20.
Seattle, WA, USA: Association for Computing Machinery. 3505–3513.
ISBN: 9781450379885. DOI: 10 .1145/3394171.3413711. URL: https :
//doi.org/10.1145/3394171.3413711.

https://doi.org/10.1145/3394171.3413711
https://doi.org/10.1145/3394171.3413711
https://doi.org/10.1145/3394171.3413711

150 References

Hu, J., Q. Fang, S. Qian, and C. Xu. (2020b). “Multi-modal Attentive Graph
Pooling Model for Community Question Answer Matching”. In: Proceed-
ings of the 28th ACM International Conference on Multimedia. 3505–
3513.

Hu, J., S. Qian, Q. Fang, and C. Xu. (2018). “Attentive Interactive Convolu-
tional Matching for Community Question Answering in Social Multime-
dia”. In: Proceedings of the 26th ACM International Conference on Multi-
media. MM ’18. Seoul, Republic of Korea: Association for Computing Ma-
chinery. 456–464. ISBN: 9781450356657. DOI: 10.1145/3240508.3240626.
URL: https://doi.org/10.1145/3240508.3240626.

Hu, J., S. Qian, Q. Fang, and C. Xu. (2019a). “Hierarchical Graph Semantic
Pooling Network for Multi-Modal Community Question Answer Match-
ing”. In: Proceedings of the 27th ACM International Conference on Mul-
timedia. MM ’19. Nice, France: Association for Computing Machinery.
1157–1165. ISBN: 9781450368896. DOI: 10.1145/3343031.3350966. URL:
https://doi.org/10.1145/3343031.3350966.

Hu, J., S. Qian, Q. Fang, and C. Xu. (2019b). “Hierarchical graph semantic
pooling network for multi-modal community question answer matching”.
In: Proceedings of the 27th ACM International Conference on Multimedia.
1157–1165.

Hu, L., T. Yang, C. Shi, H. Ji, and X. Li. (2019c). “Heterogeneous Graph
Attention Networks for Semi-supervised Short Text Classification”. In:
Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019. Ed. by K. Inui, J. Jiang, V. Ng, and X. Wan. Association for
Computational Linguistics. 4820–4829.

Hu, W., B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec.
(2019d). “Strategies for pre-training graph neural networks”. arXiv preprint
arXiv:1905.12265.

Hu, W., Z. Chan, B. Liu, D. Zhao, J. Ma, and R. Yan. (2019e). “GSN: A
Graph-Structured Network for Multi-Party Dialogues”. In: Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019. Ed. by S. Kraus. ijcai.org.
5010–5016.

https://doi.org/10.1145/3240508.3240626
https://doi.org/10.1145/3240508.3240626
https://doi.org/10.1145/3343031.3350966
https://doi.org/10.1145/3343031.3350966

References 151

Hu, Z., Y. Dong, K. Wang, and Y. Sun. (2020c). “Heterogeneous graph trans-
former”. In: Proceedings of The Web Conference 2020. 2704–2710.

Huang, B. and K. Carley. (2018). “Parameterized Convolutional Neural Net-
works for Aspect Level Sentiment Classification”. In: Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing.
Brussels, Belgium: Association for Computational Linguistics. 1091–1096.
DOI: 10.18653/v1/D18-1136. URL: https://www.aclweb.org/anthology/
D18-1136.

Huang, B. and K. Carley. (2019). “Syntax-Aware Aspect Level Sentiment
Classification with Graph Attention Networks”. In: Proceedings of the
2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Com-
putational Linguistics. 5469–5477. DOI: 10.18653/v1/D19-1549. URL:
https://www.aclweb.org/anthology/D19-1549 (accessed on 12/26/2020).

Huang, D., P. Chen, R. Zeng, Q. Du, M. Tan, and C. Gan. (2020a). “Location-
Aware Graph Convolutional Networks for Video Question Answering”.
In: The Thirty-Fourth AAAI Conference on Artificial Intelligence. AAAI
Press. 11021–11028.

Huang, L., D. Ma, S. Li, X. Zhang, and H. Wang. (2019). “Text Level Graph
Neural Network for Text Classification”. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019. Ed. by
K. Inui, J. Jiang, V. Ng, and X. Wan. Association for Computational
Linguistics. 3442–3448.

Huang, L., L. Wu, and L. Wang. (2020b). “Knowledge Graph-Augmented
Abstractive Summarization with Semantic-Driven Cloze Reward”. In:
Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics. Online: Association for Computational Linguis-
tics. 5094–5107. DOI: 10 .18653/v1/2020.acl - main .457. URL: https :
//www.aclweb.org/anthology/2020.acl-main.457.

Hughes, T. and D. Ramage. (2007). “Lexical semantic relatedness with random
graph walks”. In: Proceedings of the 2007 joint conference on empirical
methods in natural language processing and computational natural lan-
guage learning (EMNLP-CoNLL). 581–589.

https://doi.org/10.18653/v1/D18-1136
https://www.aclweb.org/anthology/D18-1136
https://www.aclweb.org/anthology/D18-1136
https://doi.org/10.18653/v1/D19-1549
https://www.aclweb.org/anthology/D19-1549
https://doi.org/10.18653/v1/2020.acl-main.457
https://www.aclweb.org/anthology/2020.acl-main.457
https://www.aclweb.org/anthology/2020.acl-main.457

152 References

Huo, S., T. Ma, J. Chen, M. Chang, L. Wu, and M. Witbrock. (2019). “Graph
Enhanced Cross-Domain Text-to-SQL Generation”. In: Proceedings of
the Thirteenth Workshop on Graph-Based Methods for Natural Language
Processing (TextGraphs-13). Hong Kong: Association for Computational
Linguistics. 159–163. DOI: 10.18653/v1/D19-5319. URL: https://www.
aclweb.org/anthology/D19-5319.

Isonuma, M., J. Mori, D. Bollegala, and I. Sakata. (2020). “Tree-Structured
Neural Topic Model”. In: Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Online: Association for
Computational Linguistics. 800–806. DOI: 10.18653/v1/2020.acl-main.73.
URL: https://www.aclweb.org/anthology/2020.acl-main.73.

Iyer, S., I. Konstas, A. Cheung, and L. Zettlemoyer. (2016). “Summarizing
source code using a neural attention model”. In: Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). 2073–2083.

Ji, S., S. Pan, E. Cambria, P. Marttinen, and P. S. Yu. (2020). “A survey on
knowledge graphs: Representation, acquisition and applications”. arXiv
preprint arXiv:2002.00388.

Ji, T., Y. Wu, and M. Lan. (2019). “Graph-based Dependency Parsing with
Graph Neural Networks”. In: Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics. Florence, Italy: Association
for Computational Linguistics. 2475–2485. DOI: 10.18653/v1/P19-1237.
URL: https://www.aclweb.org/anthology/P19-1237.

Jia, R. and P. Liang. (2016). “Data Recombination for Neural Semantic Pars-
ing”. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Berlin, Germany:
Association for Computational Linguistics. 12–22. DOI: 10.18653/v1/P16-
1002. URL: https://www.aclweb.org/anthology/P16-1002.

Jia, R., Y. Cao, H. Tang, F. Fang, C. Cao, and S. Wang. (2020). “Neural
Extractive Summarization with Hierarchical Attentive Heterogeneous
Graph Network”. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Online: Association
for Computational Linguistics. 3622–3631. DOI: 10.18653/v1/2020.emnlp-
main.295. URL: https://www.aclweb.org/anthology/2020.emnlp-main.295.

https://doi.org/10.18653/v1/D19-5319
https://www.aclweb.org/anthology/D19-5319
https://www.aclweb.org/anthology/D19-5319
https://doi.org/10.18653/v1/2020.acl-main.73
https://www.aclweb.org/anthology/2020.acl-main.73
https://doi.org/10.18653/v1/P19-1237
https://www.aclweb.org/anthology/P19-1237
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://www.aclweb.org/anthology/P16-1002
https://doi.org/10.18653/v1/2020.emnlp-main.295
https://doi.org/10.18653/v1/2020.emnlp-main.295
https://www.aclweb.org/anthology/2020.emnlp-main.295

References 153

Jiang, L., M. Yu, M. Zhou, X. Liu, and T. Zhao. (2011). “Target-dependent
twitter sentiment classification”. In: Proceedings of the 49th annual meet-
ing of the association for computational linguistics: human language
technologies. 151–160.

Jiang, Q., L. Chen, R. Xu, X. Ao, and M. Yang. (2019). “A challenge dataset
and effective models for aspect-based sentiment analysis”. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). 6281–6286.

Jin, H., L. Hou, J. Li, and T. Dong. (2019). “Fine-Grained Entity Typing via
Hierarchical Multi Graph Convolutional Networks”. In: Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Com-
putational Linguistics. 4969–4978. DOI: 10.18653/v1/D19-1502. URL:
https://www.aclweb.org/anthology/D19-1502.

Jin, H., T. Wang, and X. Wan. (2020a). “SemSUM: Semantic Dependency
Guided Neural Abstractive Summarization”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 34. No. 05. 8026–8033.

Jin, H., T. Wang, and X. Wan. (2020b). “SemSUM: Semantic Dependency
Guided Neural Abstractive Summarization”. Proceedings of the AAAI
Conference on Artificial Intelligence. 34(05): 8026–8033. DOI: 10.1609/
aaai.v34i05.6312. URL: https://ojs.aaai.org/index.php/AAAI/article/view/
6312.

Jin, L. and D. Gildea. (2020). “Generalized Shortest-Paths Encoders for AMR-
to-Text Generation”. In: Proceedings of the 28th International Conference
on Computational Linguistics. Barcelona, Spain (Online): International
Committee on Computational Linguistics. 2004–2013. URL: https://www.
aclweb.org/anthology/2020.coling-main.181.

Joulin, A., É. Grave, P. Bojanowski, and T. Mikolov. (2017). “Bag of Tricks
for Efficient Text Classification”. In: Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers. 427–431.

Kalofolias, V. and N. Perraudin. (2019). “Large Scale Graph Learning From
Smooth Signals”. In: 7th International Conference on Learning Represen-
tations.

https://doi.org/10.18653/v1/D19-1502
https://www.aclweb.org/anthology/D19-1502
https://doi.org/10.1609/aaai.v34i05.6312
https://doi.org/10.1609/aaai.v34i05.6312
https://ojs.aaai.org/index.php/AAAI/article/view/6312
https://ojs.aaai.org/index.php/AAAI/article/view/6312
https://www.aclweb.org/anthology/2020.coling-main.181
https://www.aclweb.org/anthology/2020.coling-main.181

154 References

Kapanipathi, P., V. Thost, S. Patel, S. Whitehead, I. Abdelaziz, A. Balakr-
ishnan, M. Chang, K. P. Fadnis, R. C. Gunasekara, B. Makni, N. Mattei,
K. Talamadupula, and A. Fokoue. (2020). “Infusing Knowledge into the
Textual Entailment Task Using Graph Convolutional Networks”. In: AAAI.

Katharopoulos, A., A. Vyas, N. Pappas, and F. Fleuret. (2020). “Transform-
ers are rnns: Fast autoregressive transformers with linear attention”. In:
International Conference on Machine Learning. PMLR. 5156–5165.

Khot, T., A. Sabharwal, and P. Clark. (2018). “Scitail: A textual entailment
dataset from science question answering”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 32. No. 1.

Kim, Y. (2014). “Convolutional Neural Networks for Sentence Classification”.
In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar,
A meeting of SIGDAT, a Special Interest Group of the ACL. Ed. by A.
Moschitti, B. Pang, and W. Daelemans. ACL. 1746–1751. DOI: 10.3115/
v1/d14-1181. URL: https://doi.org/10.3115/v1/d14-1181.

Kingsbury, P. R. and M. Palmer. (2002). “From TreeBank to PropBank.” In:
LREC. Citeseer. 1989–1993.

Kiperwasser, E. and Y. Goldberg. (2016). “Simple and Accurate Dependency
Parsing Using Bidirectional LSTM Feature Representations”. Transactions
of the Association for Computational Linguistics. 4: 313–327. DOI: 10.
1162/tacl_a_00101. URL: https://www.aclweb.org/anthology/Q16-1023.

Kipf, T. N. and M. Welling. (2016). “Semi-supervised classification with graph
convolutional networks”. arXiv preprint arXiv:1609.02907.

Kiros, R., Y. Zhu, R. Salakhutdinov, R. S. Zemel, R. Urtasun, A. Torralba, and
S. Fidler. (2015). “Skip-Thought Vectors”. In: NIPS.

Klicpera, J., A. Bojchevski, and S. Günnemann. (2019). “Combining Neural
Networks with Personalized PageRank for Classification on Graphs”.
In: International Conference on Learning Representations. URL: https:
//openreview.net/forum?id=H1gL-2A9Ym.

Knight, K., B. Badarau, L. Banarescu, C. Bonial, M. Bardocz, K. Griffitt, U.
Hermjakob, D. Marcu, M. Palmer, T. O’Gorman, et al. (2017). “Abstract
Meaning Representation (AMR) Annotation Release 2.0”. Tech. rep. Tech-
nical Report LDC2017T10, Linguistic Data Consortium, Philadelphia, PA,
June.

https://doi.org/10.3115/v1/d14-1181
https://doi.org/10.3115/v1/d14-1181
https://doi.org/10.3115/v1/d14-1181
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://www.aclweb.org/anthology/Q16-1023
https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=H1gL-2A9Ym

References 155

Knight, K., L. Baranescu, C. Bonial, M. Georgescu, K. Griffitt, U. Hermjakob,
D. Marcu, M. Palmer, and N. Schneider. (2014). “Abstract meaning repre-
sentation (AMR) annotation release 1.0 LDC2014T12”. Web Download.
Philadelphia: Linguistic Data Consortium.

Koncel-Kedziorski, R., D. Bekal, Y. Luan, M. Lapata, and H. Hajishirzi.
(2019). “Text Generation from Knowledge Graphs with Graph Trans-
formers”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics. 2284–2293. DOI:
10.18653/v1/N19-1238. URL: https://www.aclweb.org/anthology/N19-
1238.

Koncel-Kedziorski, R., S. Roy, A. Amini, N. Kushman, and H. Hajishirzi.
(2016). “MAWPS: A math word problem repository”. In: Proceedings of
the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. 1152–1157.

Krizhevsky, A., I. Sutskever, and G. E. Hinton. (2012). “ImageNet Classifica-
tion with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems. Ed. by F. Pereira, C. J. C. Burges, L. Bot-
tou, and K. Q. Weinberger. Vol. 25. Curran Associates, Inc. URL: https://
proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-
Paper.pdf.

Kumar, V., Y. Hua, G. Ramakrishnan, G. Qi, L. Gao, and Y.-F. Li. (2019).
“Difficulty-controllable multi-hop question generation from knowledge
graphs”. In: International Semantic Web Conference. Springer. 382–398.

Lafferty, J. D., A. McCallum, and F. C. N. Pereira. (2001). “Conditional Ran-
dom Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data”. In: Proceedings of the Eighteenth International Conference on
Machine Learning (ICML 2001), Williams College, Williamstown, MA,
USA, June 28 - July 1, 2001. Ed. by C. E. Brodley and A. P. Danyluk.
Morgan Kaufmann. 282–289.

Lan, Z., M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. (2019).
“ALBERT: A Lite BERT for Self-supervised Learning of Language Rep-
resentations”. In: International Conference on Learning Representations.

Lang, K. (1995). “Newsweeder: Learning to filter netnews”. In: Machine
Learning Proceedings 1995. Elsevier. 331–339.

https://doi.org/10.18653/v1/N19-1238
https://www.aclweb.org/anthology/N19-1238
https://www.aclweb.org/anthology/N19-1238
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

156 References

Larochelle, H. and S. Lauly. (2012). “A neural autoregressive topic model”.
Advances in Neural Information Processing Systems. 25: 2708–2716.

Le, Q. and T. Mikolov. (2014). “Distributed representations of sentences and
documents”. In: International conference on machine learning. PMLR.
1188–1196.

LeClair, A., S. Haque, L. Wu, and C. McMillan. (2020). “Improved code sum-
marization via a graph neural network”. arXiv preprint arXiv:2004.02843.

LeCun, Y. and Y. Bengio. (1998). “Convolutional networks for images, speech,
and time series”. In: The handbook of brain theory and neural networks.
255–258.

Lee, D., C. Szegedy, M. Rabe, S. Loos, and K. Bansal. (2020). “Mathematical
Reasoning in Latent Space”. In: International Conference on Learning
Representations. URL: https://openreview.net/forum?id=Ske31kBtPr.

Lee, H., Y. Peirsman, A. Chang, N. Chambers, M. Surdeanu, and D. Juraf-
sky. (2011). “Stanford’s multi-pass sieve coreference resolution system
at the conll-2011 shared task”. In: Proceedings of the 15th conference on
computational natural language learning: Shared task. Association for
Computational Linguistics. 28–34.

Levesque, H., E. Davis, and L. Morgenstern. (2012). “The winograd schema
challenge”. In: Thirteenth International Conference on the Principles of
Knowledge Representation and Reasoning. Citeseer.

Levi, F. W. (1942). Finite geometrical systems: six public lectues delivered in
February, 1940, at the University of Calcutta. University of Calcutta.

Lewis, D. D., Y. Yang, T. G. Rose, and F. Li. (2004). “Rcv1: A new benchmark
collection for text categorization research”. Journal of machine learning
research. 5(Apr): 361–397.

Li, C. and D. Goldwasser. (2019). “Encoding Social Information with Graph
Convolutional Networks forPolitical Perspective Detection in News Me-
dia”. In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Florence, Italy: Association for Computa-
tional Linguistics. 2594–2604. DOI: 10.18653/v1/P19-1247. URL: https:
//www.aclweb.org/anthology/P19-1247.

https://openreview.net/forum?id=Ske31kBtPr
https://doi.org/10.18653/v1/P19-1247
https://www.aclweb.org/anthology/P19-1247
https://www.aclweb.org/anthology/P19-1247

References 157

Li, C., Y. Cao, L. Hou, J. Shi, J. Li, and T.-S. Chua. (2019). “Semi-supervised
entity alignment via joint knowledge embedding model and cross-graph
model”. In: Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). 2723–2732.

Li, L., A. Way, and Q. Liu. (2017). “Context-Aware Graph Segmentation
for Graph-Based Translation”. In: Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers. Valencia, Spain: Association for Computational
Linguistics. 599–604. URL: https://www.aclweb.org/anthology/E17-2095.

Li, R., S. Wang, F. Zhu, and J. Huang. (2018a). “Adaptive graph convolutional
neural networks”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 32.

Li, S., L. Wu, S. Feng, F. Xu, F. Xu, and S. Zhong. (2020a). “Graph-to-Tree
Neural Networks for Learning Structured Input-Output Translation with
Applications to Semantic Parsing and Math Word Problem”. In: Findings
of the Association for Computational Linguistics: EMNLP 2020. Online:
Association for Computational Linguistics. 2841–2852. DOI: 10.18653/
v1/2020.findings-emnlp.255. URL: https://www.aclweb.org/anthology/
2020.findings-emnlp.255.

Li, W., X. Xiao, J. Liu, H. Wu, H. Wang, and J. Du. (2020b). “Leveraging
Graph to Improve Abstractive Multi-Document Summarization”. arXiv
preprint arXiv:2005.10043.

Li, Y., J. Amelot, X. Zhou, S. Bengio, and S. Si. (2020c). “Auto completion of
user interface layout design using transformer-based tree decoders”. arXiv
preprint arXiv:2001.05308.

Li, Y., N. Duan, B. Zhou, X. Chu, W. Ouyang, X. Wang, and M. Zhou. (2018b).
“Visual question generation as dual task of visual question answering”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 6116–6124.

Li, Y., D. Tarlow, M. Brockschmidt, and R. Zemel. (2015). “Gated graph
sequence neural networks”. arXiv preprint arXiv:1511.05493.

Li, Z., S. He, J. Cai, Z. Zhang, H. Zhao, G. Liu, L. Li, and L. Si. (2018c). “A
unified syntax-aware framework for semantic role labeling”. In: Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language
Processing. 2401–2411.

https://www.aclweb.org/anthology/E17-2095
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://www.aclweb.org/anthology/2020.findings-emnlp.255
https://www.aclweb.org/anthology/2020.findings-emnlp.255

158 References

Liao, K., L. Lebanoff, and F. Liu. (2018). “Abstract meaning representation
for multi-document summarization”. arXiv preprint arXiv:1806.05655.

Lin, B. Y., X. Chen, J. Chen, and X. Ren. (2019a). “KagNet: Knowledge-
Aware Graph Networks for Commonsense Reasoning”. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Com-
putational Linguistics. 2829–2839. DOI: 10.18653/v1/D19-1282. URL:
https://www.aclweb.org/anthology/D19-1282.

Lin, B. Y., X. Chen, J. Chen, and X. Ren. (2019b). “KagNet: Knowledge-
Aware Graph Networks for Commonsense Reasoning”. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). 2822–2832.

Lin, X. V., R. Socher, and C. Xiong. (2018). “Multi-Hop Knowledge Graph
Reasoning with Reward Shaping”. In: Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing. 3243–3253.

Linmei, H., T. Yang, C. Shi, H. Ji, and X. Li. (2019). “Heterogeneous Graph
Attention Networks for Semi-supervised Short Text Classification”. In:
Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association
for Computational Linguistics. 4821–4830. DOI: 10.18653/v1/D19-1488.
URL: https://www.aclweb.org/anthology/D19-1488.

Liu, B., D. Niu, H. Wei, J. Lin, Y. He, K. Lai, and Y. Xu. (2019a). “Match-
ing Article Pairs with Graphical Decomposition and Convolutions”. In:
Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume
1: Long Papers. Ed. by A. Korhonen, D. R. Traum, and L. Màrquez.
Association for Computational Linguistics. 6284–6294.

Liu, B. and L. Wu. (2022). “Graph Neural Networks in Natural Language
Processing”. In: Graph Neural Networks: Foundations, Frontiers, and
Applications. Ed. by L. Wu, P. Cui, J. Pei, and L. Zhao. Singapore: Springer
Singapore. 463–481.

https://doi.org/10.18653/v1/D19-1282
https://www.aclweb.org/anthology/D19-1282
https://doi.org/10.18653/v1/D19-1488
https://www.aclweb.org/anthology/D19-1488

References 159

Liu, B., M. Zhao, D. Niu, K. Lai, Y. He, H. Wei, and Y. Xu. (2019b). “Learning
to Generate Questions by LearningWhat Not to Generate”. In: The World
Wide Web Conference. WWW ’19. San Francisco, CA, USA: Association
for Computing Machinery. 1106–1118.

Liu, B., B. Ramsundar, P. Kawthekar, J. Shi, J. Gomes, Q. Luu Nguyen, S. Ho,
J. Sloane, P. Wender, and V. Pande. (2017). “Retrosynthetic reaction pre-
diction using neural sequence-to-sequence models”. ACS central science.
3(10): 1103–1113.

Liu, D. and D. Gildea. (2010). “Semantic role features for machine translation”.
In: Proceedings of the 23rd International Conference on Computational
Linguistics (Coling 2010). 716–724.

Liu, J. and Y. Zhang. (2017). “In-Order Transition-based Constituent Parsing”.
Transactions of the Association for Computational Linguistics. 5: 413–424.
DOI: 10.1162/tacl_a_00070. URL: https://www.aclweb.org/anthology/Q17-
1029.

Liu, M., Y. Luo, L. Wang, Y. Xie, H. Yuan, S. Gui, H. Yu, Z. Xu, J. Zhang,
Y. Liu, et al. (2021a). “DIG: A Turnkey Library for Diving into Graph
Deep Learning Research”. arXiv preprint arXiv:2103.12608.

Liu, P., S. Chang, X. Huang, J. Tang, and J. C. K. Cheung. (2019c). “Contextu-
alized non-local neural networks for sequence learning”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 33. 6762–6769.

Liu, P., X. Qiu, and X. Huang. (2016). “Recurrent neural network for text
classification with multi-task learning”. In: Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence. 2873–2879.

Liu, P. J., M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer.
(2018a). “Generating wikipedia by summarizing long sequences”. arXiv
preprint arXiv:1801.10198.

Liu, S., Y. Chen, X. Xie, J. K. Siow, and Y. Liu. (2021b). “Retrieval-Augmented
Generation for Code Summarization via Hybrid GNN”. In: 9th Interna-
tional Conference on Learning Representations.

Liu, X., Z. Luo, and H. Huang. (2018b). “Jointly Multiple Events Extraction
via Attention-based Graph Information Aggregation”. In: Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing. Brussels, Belgium: Association for Computational Linguistics.
1247–1256. DOI: 10.18653/v1/D18-1156. URL: https://www.aclweb.org/
anthology/D18-1156.

https://doi.org/10.1162/tacl_a_00070
https://www.aclweb.org/anthology/Q17-1029
https://www.aclweb.org/anthology/Q17-1029
https://doi.org/10.18653/v1/D18-1156
https://www.aclweb.org/anthology/D18-1156
https://www.aclweb.org/anthology/D18-1156

160 References

Liu, X., X. You, X. Zhang, J. Wu, and P. Lv. (2020). “Tensor Graph Convo-
lutional Networks for Text Classification”. In: The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Inno-
vative Applications of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press. 8409–
8416.

Liu, X., Q. Chen, C. Deng, H. Zeng, J. Chen, D. Li, and B. Tang. (2018c).
“Lcqmc: A large-scale chinese question matching corpus”. In: Proceedings
of the 27th International Conference on Computational Linguistics. 1952–
1962.

Liu, Y. (2019). “Fine-tune BERT for extractive summarization”. arXiv preprint
arXiv:1903.10318.

Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L.
Zettlemoyer, and V. Stoyanov. (2019d). “Roberta: A robustly optimized
bert pretraining approach”. arXiv preprint arXiv:1907.11692.

Liu, Y., S. Feng, D. Wang, K. Song, F. Ren, and Y. Zhang. (2021c). “A Graph
Reasoning Network for Multi-turn Response Selection via Customized Pre-
training”. In: The Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Virtual, February 2-9, 2021.

Long, Q., Y. Jin, G. Song, Y. Li, and W. Lin. (2020). “Graph Structural-topic
Neural Network”. In: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. KDD ’20. New York,
NY, USA: Association for Computing Machinery. 1065–1073. ISBN: 978-
1-4503-7998-4. DOI: 10.1145/3394486.3403150. URL: http://doi.org/10.
1145/3394486.3403150 (accessed on 12/25/2020).

Lowe, R., N. Pow, I. V. Serban, and J. Pineau. (2015). “The Ubuntu Dialogue
Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dia-
logue Systems”. In: 16th Annual Meeting of the Special Interest Group on
Discourse and Dialogue. 285.

Lu, Z. and H. Li. (2013). “A deep architecture for matching short texts”.
Advances in neural information processing systems. 26: 1367–1375.

Luan, Y., L. He, M. Ostendorf, and H. Hajishirzi. (2018). “Multi-Task Identifi-
cation of Entities, Relations, and Coreference for Scientific Knowledge
Graph Construction”. In: Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing. 3219–3232.

https://doi.org/10.1145/3394486.3403150
http://doi.org/10.1145/3394486.3403150
http://doi.org/10.1145/3394486.3403150

References 161

Luan, Y., D. Wadden, L. He, A. Shah, M. Ostendorf, and H. Hajishirzi. (2019).
“A general framework for information extraction using dynamic span
graphs”. In: Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). 3036–3046.

Luke, S. (2005). “Ze lemoyer and Michael Collins. Learning to map sentences
to logical form: Structured classification with probabilistic categorial
grammars”. In: UAI. Vol. 2. 3.

Luo, Y. and H. Zhao. (2020). “Bipartite Flat-Graph Network for Nested Named
Entity Recognition”. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online: Association for Com-
putational Linguistics. 6408–6418. DOI: 10.18653/v1/2020.acl-main.571.
URL: https://www.aclweb.org/anthology/2020.acl-main.571.

Luong, M.-T., H. Pham, and C. D. Manning. (2015). “Effective approaches to
attention-based neural machine translation”. arXiv preprint arXiv:1508.04025.

Ma, X., Z. Hu, J. Liu, N. Peng, G. Neubig, and E. Hovy. (2018). “Stack-Pointer
Networks for Dependency Parsing”. In: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Melbourne, Australia: Association for Computational Linguistics.
1403–1414. DOI: 10.18653/v1/P18-1130. URL: https://www.aclweb.org/
anthology/P18-1130.

Ma, Y., S. Wang, C. C. Aggarwal, and J. Tang. (2019). “Graph convolutional
networks with eigenpooling”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 723–
731.

Malaviya, C., C. Bhagavatula, A. Bosselut, and Y. Choi. (2020). “Common-
sense Knowledge Base Completion with Structural and Semantic Context.”
In: AAAI. 2925–2933.

Mann, W. C. and S. A. Thompson. (1987). Rhetorical structure theory: A
theory of text organization. University of Southern California, Information
Sciences Institute Los Angeles.

https://doi.org/10.18653/v1/2020.acl-main.571
https://www.aclweb.org/anthology/2020.acl-main.571
https://doi.org/10.18653/v1/P18-1130
https://www.aclweb.org/anthology/P18-1130
https://www.aclweb.org/anthology/P18-1130

162 References

Marcheggiani, D., J. Bastings, and I. Titov. (2018). “Exploiting Semantics
in Neural Machine Translation with Graph Convolutional Networks”. In:
Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers). New Orleans, Louisiana: Association for
Computational Linguistics. 486–492. DOI: 10.18653/v1/N18-2078. URL:
https://www.aclweb.org/anthology/N18-2078.

Marcheggiani, D., A. Frolov, and I. Titov. (2017). “A simple and accurate
syntax-agnostic neural model for dependency-based semantic role label-
ing”. arXiv preprint arXiv:1701.02593.

Marcheggiani, D. and L. Perez-Beltrachini. (2018). “Deep Graph Convolu-
tional Encoders for Structured Data to Text Generation”. In: Proceedings
of the 11th International Conference on Natural Language Generation.
Tilburg University, The Netherlands: Association for Computational Lin-
guistics. 1–9. DOI: 10.18653/v1/W18-6501. URL: https://www.aclweb.
org/anthology/W18-6501.

Marcheggiani, D. and I. Titov. (2017). “Encoding Sentences with Graph Con-
volutional Networks for Semantic Role Labeling”. In: Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing.
1506–1515.

Marcheggiani, D. and I. Titov. (2020). “Graph Convolutions over Constituent
Trees for Syntax-Aware Semantic Role Labeling”. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). 3915–3928.

Marquez, L., P. Comas, J. Giménez, and N. Catala. (2005). “Semantic role
labeling as sequential tagging”. In: Proceedings of the Ninth Conference
on Computational Natural Language Learning (CoNLL-2005). 193–196.

Miao, Y., L. Yu, and P. Blunsom. (2016). “Neural variational inference for text
processing”. In: International conference on machine learning. PMLR.
1727–1736.

Mihalcea, R. (2005). “Unsupervised large-vocabulary word sense disambigua-
tion with graph-based algorithms for sequence data labeling”. In: Pro-
ceedings of Human Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing. 411–418.

Mihalcea, R. and D. Radev. (2011). Graph-based natural language processing
and information retrieval. Cambridge university press.

https://doi.org/10.18653/v1/N18-2078
https://www.aclweb.org/anthology/N18-2078
https://doi.org/10.18653/v1/W18-6501
https://www.aclweb.org/anthology/W18-6501
https://www.aclweb.org/anthology/W18-6501

References 163

Mihalcea, R. and P. Tarau. (2004). “Textrank: Bringing order into text”. In:
Proceedings of the 2004 conference on empirical methods in natural
language processing. 404–411.

Mihaylov, T., P. Clark, T. Khot, and A. Sabharwal. (2018). “Can a Suit of
Armor Conduct Electricity? A New Dataset for Open Book Question An-
swering”. In: Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing. 2381–2391.

Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. (2013). “Dis-
tributed Representations of Words and Phrases and their Compositionality”.
In: Advances in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States.
Ed. by C. J. C. Burges, L. Bottou, Z. Ghahramani, and K. Q. Weinberger.
3111–3119. URL: https : / / proceedings . neurips . cc / paper / 2013 / hash /
9aa42b31882ec039965f3c4923ce901b-Abstract.html.

Miller, A., A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston. (2016).
“Key-Value Memory Networks for Directly Reading Documents”. In:
Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing. Austin, Texas: Association for Computational Lin-
guistics. 1400–1409. DOI: 10.18653/v1/D16-1147. URL: https://www.
aclweb.org/anthology/D16-1147.

Minkov, E., W. W. Cohen, and A. Y. Ng. (2006). “Contextual search and name
disambiguation in email using graphs”. In: Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in
information retrieval. 27–34.

Monz, C. and B. J. Dorr. (2005). “Iterative translation disambiguation for
cross-language information retrieval”. In: Proceedings of the 28th annual
international ACM SIGIR conference on Research and development in
information retrieval. 520–527.

Nair, V. and G. E. Hinton. (2010). “Rectified linear units improve restricted
boltzmann machines”. In: ICML.

Nallapati, R., B. Zhou, C. dos Santos, Ç. Gulçehre, and B. Xiang. (2016).
“Abstractive Text Summarization using Sequence-to-sequence RNNs and
Beyond”. In: Proceedings of The 20th SIGNLL Conference on Computa-
tional Natural Language Learning. 280–290.

https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://doi.org/10.18653/v1/D16-1147
https://www.aclweb.org/anthology/D16-1147
https://www.aclweb.org/anthology/D16-1147

164 References

Nathani, D., J. Chauhan, C. Sharma, and M. Kaul. (2019a). “Learning Attention-
based Embeddings for Relation Prediction in Knowledge Graphs”. In: Pro-
ceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computational Linguistics.
4710–4723. DOI: 10.18653/v1/P19-1466. URL: https://www.aclweb.org/
anthology/P19-1466.

Nathani, D., J. Chauhan, C. Sharma, and M. Kaul. (2019b). “Learning Attention-
based Embeddings for Relation Prediction in Knowledge Graphs”. In: Pro-
ceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. 4710–4723.

Nguyen, T. H. and R. Grishman. (2018). “Graph convolutional networks with
argument-aware pooling for event detection”. In: 32nd AAAI Conference
on Artificial Intelligence, AAAI 2018. AAAI press. 5900–5907.

Niu, Z.-Y., D. Ji, and C. L. Tan. (2005). “Word sense disambiguation using
label propagation based semi-supervised learning”. In: Proceedings of the
43rd Annual Meeting of the Association for Computational Linguistics
(ACL’05). 395–402.

Nivre et al., J. (2018). “Universal Dependencies 2.2”. URL: http://hdl.handle.
net/11234/1-2837.

Norcliffe-Brown, W., S. Vafeias, and S. Parisot. (2018). “Learning Condi-
tioned Graph Structures for Interpretable Visual Question Answering”. In:
Advances in neural information processing systems. 8334–8343.

Page, L., S. Brin, R. Motwani, and T. Winograd. (1999). “The PageRank
citation ranking: Bringing order to the web.” Tech. rep. Stanford InfoLab.

Palangi, H., L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and R.
Ward. (2016). “Deep sentence embedding using long short-term memory
networks: Analysis and application to information retrieval”. IEEE/ACM
Transactions on Audio, Speech, and Language Processing. 24(4): 694–
707.

Pan, L., Y. Xie, Y. Feng, T.-S. Chua, and M.-Y. Kan. (2020). “Semantic
Graphs for Generating Deep Questions”. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. 1463–
1475.

https://doi.org/10.18653/v1/P19-1466
https://www.aclweb.org/anthology/P19-1466
https://www.aclweb.org/anthology/P19-1466
http://hdl.handle.net/11234/1-2837
http://hdl.handle.net/11234/1-2837

References 165

Pang, B. and L. Lee. (2004). “A Sentimental Education: Sentiment Analysis
Using Subjectivity Summarization Based on Minimum Cuts”. In: Proceed-
ings of the 42nd Annual Meeting of the Association for Computational
Linguistics (ACL-04). 271–278.

Pang, B., L. Lee, and S. Vaithyanathan. (2002). “Thumbs up? Sentiment
Classification using Machine Learning Techniques”. In: EMNLP.

Pang, L., Y. Lan, J. Guo, J. Xu, S. Wan, and X. Cheng. (2016). “Text match-
ing as image recognition”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 30. No. 1.

Paulus, R., C. Xiong, and R. Socher. (2018). “A Deep Reinforced Model for
Abstractive Summarization”. In: International Conference on Learning
Representations.

Peng, H., J. Li, Y. He, Y. Liu, M. Bao, L. Wang, Y. Song, and Q. Yang. (2018).
“Large-scale hierarchical text classification with recursively regularized
deep graph-cnn”. In: Proceedings of the 2018 world wide web conference.
1063–1072.

Peng, H., N. Pappas, D. Yogatama, R. Schwartz, N. Smith, and L. Kong.
(2021). “Random Feature Attention”. In: International Conference on
Learning Representations.

Pennington, J., R. Socher, and C. D. Manning. (2014). “Glove: Global vec-
tors for word representation”. In: Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

Peters, M., M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L.
Zettlemoyer. (2018). “Deep Contextualized Word Representations”. In:
Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers). 2227–2237.

Phan, X.-H., L.-M. Nguyen, and S. Horiguchi. (2008). “Learning to classify
short and sparse text & web with hidden topics from large-scale data
collections”. In: Proceedings of the 17th international conference on
World Wide Web. 91–100.

Ponte, J. M. and W. B. Croft. (1998). “A language modeling approach to
information retrieval”. In: Proceedings of the 21st annual international
ACM SIGIR conference on Research and development in information
retrieval. 275–281.

166 References

Pontiki, M., D. Galanis, H. Papageorgiou, I. Androutsopoulos, S. Manandhar,
M. Al-Smadi, M. Al-Ayyoub, Y. Zhao, B. Qin, O. De Clercq, et al. (2016).
“Semeval-2016 task 5: Aspect based sentiment analysis”. In: International
workshop on semantic evaluation. 19–30.

Pontiki, M., D. Galanis, H. Papageorgiou, S. Manandhar, and I. Androutsopou-
los. (2015). “Semeval-2015 task 12: Aspect based sentiment analysis”.
In: Proceedings of the 9th international workshop on semantic evaluation
(SemEval 2015). 486–495.

Pontiki, M., D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos,
and S. Manandhar. (2014). “SemEval-2014 Task 4: Aspect Based Sen-
timent Analysis”. In: Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014). Dublin, Ireland: Association for
Computational Linguistics. 27–35. DOI: 10.3115/v1/S14- 2004. URL:
https://www.aclweb.org/anthology/S14-2004.

Pouran Ben Veyseh, A., N. Nouri, F. Dernoncourt, Q. H. Tran, D. Dou, and
T. H. Nguyen. (2020). “Improving Aspect-based Sentiment Analysis with
Gated Graph Convolutional Networks and Syntax-based Regulation”. In:
Findings of the Association for Computational Linguistics: EMNLP 2020.
Online: Association for Computational Linguistics. 4543–4548. DOI: 10.
18653/v1/2020.findings- emnlp.407. URL: https: / /www.aclweb.org/
anthology/2020.findings-emnlp.407 (accessed on 12/26/2020).

Pourdamghani, N., Y. Gao, U. Hermjakob, and K. Knight. (2014). “Align-
ing English Strings with Abstract Meaning Representation Graphs”. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Doha, Qatar: Association for Compu-
tational Linguistics. 425–429. DOI: 10.3115/v1/D14-1048. URL: https:
//www.aclweb.org/anthology/D14-1048.

Pourdamghani, N., K. Knight, and U. Hermjakob. (2016). “Generating en-
glish from abstract meaning representations”. In: Proceedings of the 9th
international natural language generation conference. 21–25.

Qian, Y., E. Santus, Z. Jin, J. Guo, and R. Barzilay. (2019). “GraphIE: A
Graph-Based Framework for Information Extraction”. In: Proceedings of
the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). 751–761.

https://doi.org/10.3115/v1/S14-2004
https://www.aclweb.org/anthology/S14-2004
https://doi.org/10.18653/v1/2020.findings-emnlp.407
https://doi.org/10.18653/v1/2020.findings-emnlp.407
https://www.aclweb.org/anthology/2020.findings-emnlp.407
https://www.aclweb.org/anthology/2020.findings-emnlp.407
https://doi.org/10.3115/v1/D14-1048
https://www.aclweb.org/anthology/D14-1048
https://www.aclweb.org/anthology/D14-1048

References 167

Qiu, J., Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang, and J.
Tang. (2020). “Gcc: Graph contrastive coding for graph neural network
pre-training”. In: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 1150–1160.

Qiu, L., Y. Xiao, Y. Qu, H. Zhou, L. Li, W. Zhang, and Y. Yu. (2019). “Dynam-
ically Fused Graph Network for Multi-hop Reasoning”. In: Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics. 6140–6150.
DOI: 10.18653/v1/P19-1617. URL: https://www.aclweb.org/anthology/
P19-1617.

Qu, M., T. Gao, L.-P. Xhonneux, and J. Tang. (2020). “Few-shot Relation Ex-
traction via Bayesian Meta-learning on Relation Graphs”. In: International
Conference on Machine Learning. PMLR. 7867–7876.

Radford, A., J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. (2019).
“Language models are unsupervised multitask learners”. OpenAI blog.
1(8): 9.

Rajpurkar, P., J. Zhang, K. Lopyrev, and P. Liang. (2016). “SQuAD: 100, 000+
Questions for Machine Comprehension of Text”. In: EMNLP.

Ramage, D., A. N. Rafferty, and C. D. Manning. (2009). “Random walks
for text semantic similarity”. In: Proceedings of the 2009 workshop on
graph-based methods for natural language processing (TextGraphs-4).
23–31.

Ran, Q., Y. Lin, P. Li, J. Zhou, and Z. Liu. (2019). “NumNet: Machine Reading
Comprehension with Numerical Reasoning”. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019. Ed. by
K. Inui, J. Jiang, V. Ng, and X. Wan. Association for Computational
Linguistics. 2474–2484.

Rashkin, H., M. Sap, E. Allaway, N. A. Smith, and Y. Choi. (2018). “Event2mind:
Commonsense inference on events, intents, and reactions”. arXiv preprint
arXiv:1805.06939.

Reddy, S., D. Chen, and C. D. Manning. (2019). “Coqa: A conversational
question answering challenge”. Transactions of the Association for Com-
putational Linguistics. 7: 249–266.

https://doi.org/10.18653/v1/P19-1617
https://www.aclweb.org/anthology/P19-1617
https://www.aclweb.org/anthology/P19-1617

168 References

Redmon, J. and A. Farhadi. (2018). “Yolov3: An incremental improvement”.
arXiv preprint arXiv:1804.02767.

Ribeiro, L. F. R., C. Gardent, and I. Gurevych. (2019a). “Enhancing AMR-
to-Text Generation with Dual Graph Representations”. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Com-
putational Linguistics. 3183–3194. DOI: 10.18653/v1/D19-1314. URL:
https://www.aclweb.org/anthology/D19-1314.

Ribeiro, L. F., C. Gardent, and I. Gurevych. (2019b). “Enhancing amr-to-text
generation with dual graph representations”. arXiv preprint arXiv:1909.00352.

Riedel, S., L. Yao, and A. McCallum. (2010). “Modeling relations and their
mentions without labeled text”. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer. 148–163.

Sachan, D. S., L. Wu, M. Sachan, and W. Hamilton. (2020). “Stronger Trans-
formers for Neural Multi-Hop Question Generation”. arXiv preprint arXiv:2010.11374.

Sagae, K. and A. Lavie. (2005). “A Classifier-Based Parser with Linear Run-
Time Complexity”. In: Proceedings of the Ninth International Workshop
on Parsing Technology. Vancouver, British Columbia: Association for
Computational Linguistics. 125–132. URL: https : / /www.aclweb.org /
anthology/W05-1513.

Sahu, S. K., F. Christopoulou, M. Miwa, and S. Ananiadou. (2019). “Inter-
sentence Relation Extraction with Document-level Graph Convolutional
Neural Network”. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence, Italy: Association
for Computational Linguistics. 4309–4316. DOI: 10.18653/v1/P19-1423.
URL: https://www.aclweb.org/anthology/P19-1423.

Sandhaus, E. (2008). “The New York Times Annotated Corpus”. Version V1.
DOI: 11272.1/AB2/GZC6PL. URL: https://hdl.handle.net/11272.1/AB2/
GZC6PL.

Santoro, A., D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia,
and T. Lillicrap. (2017). “A simple neural network module for relational
reasoning”. In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. 4974–4983.

https://doi.org/10.18653/v1/D19-1314
https://www.aclweb.org/anthology/D19-1314
https://www.aclweb.org/anthology/W05-1513
https://www.aclweb.org/anthology/W05-1513
https://doi.org/10.18653/v1/P19-1423
https://www.aclweb.org/anthology/P19-1423
https://doi.org/11272.1/AB2/GZC6PL
https://hdl.handle.net/11272.1/AB2/GZC6PL
https://hdl.handle.net/11272.1/AB2/GZC6PL

References 169

Saxena, A., A. Tripathi, and P. Talukdar. (2020). “Improving Multi-hop Ques-
tion Answering over Knowledge Graphs using Knowledge Base Embed-
dings”. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Online: Association for Computational
Linguistics. 4498–4507. DOI: 10.18653/v1/2020.acl- main.412. URL:
https://www.aclweb.org/anthology/2020.acl-main.412.

Schlichtkrull, M., T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and
M. Welling. (2018). “Modeling relational data with graph convolutional
networks”. In: European Semantic Web Conference. Springer. 593–607.

Schuster, M. and K. K. Paliwal. (1997). “Bidirectional recurrent neural net-
works”. IEEE Transactions on Signal Processing. 45(11): 2673–2681.
DOI: 10.1109/78.650093.

See, A., P. J. Liu, and C. D. Manning. (2017). “Get To The Point: Summa-
rization with Pointer-Generator Networks”. In: Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). 1073–1083.

Seo, M. J., A. Kembhavi, A. Farhadi, and H. Hajishirzi. (2017). “Bidirec-
tional Attention Flow for Machine Comprehension”. In: 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net. URL:
https://openreview.net/forum?id=HJ0UKP9ge.

Serban, I., A. Sordoni, Y. Bengio, A. Courville, and J. Pineau. (2016). “Build-
ing end-to-end dialogue systems using generative hierarchical neural net-
work models”. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence. Vol. 30. No. 1.

Serban, I., A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. Courville, and Y.
Bengio. (2017). “A hierarchical latent variable encoder-decoder model
for generating dialogues”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 31. No. 1.

Shang, C., Y. Tang, J. Huang, J. Bi, X. He, and B. Zhou. (2019). “End-to-end
structure-aware convolutional networks for knowledge base completion”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33.
3060–3067.

https://doi.org/10.18653/v1/2020.acl-main.412
https://www.aclweb.org/anthology/2020.acl-main.412
https://doi.org/10.1109/78.650093
https://openreview.net/forum?id=HJ0UKP9ge

170 References

Shao, B., Y. Gong, W. Qi, G. Cao, J. Ji, and X. Lin. (2020). “Graph-Based
Transformer with Cross-Candidate Verification for Semantic Parsing”.
Proceedings of the AAAI Conference on Artificial Intelligence. 34(05):
8807–8814. DOI: 10.1609/aaai.v34i05.6408. URL: https://ojs.aaai.org/
index.php/AAAI/article/view/6408.

Shaw, P., J. Uszkoreit, and A. Vaswani. (2018). “Self-Attention with Relative
Position Representations”. In: Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers). New Orleans,
Louisiana: Association for Computational Linguistics. 464–468. DOI:
10.18653/v1/N18-2074. URL: https://www.aclweb.org/anthology/N18-
2074.

Shen, D. and M. Lapata. (2007). “Using semantic roles to improve question
answering”. In: Proceedings of the 2007 joint conference on empirical
methods in natural language processing and computational natural lan-
guage learning (EMNLP-CoNLL). 12–21.

Shen, Z., M. Zhang, H. Zhao, S. Yi, and H. Li. (2021). “Efficient attention:
Attention with linear complexities”. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 3531–3539.

Shi, C., M. Xu, H. Guo, M. Zhang, and J. Tang. (2020). “A graph to graphs
framework for retrosynthesis prediction”. In: International Conference on
Machine Learning. PMLR. 8818–8827.

Simonovsky, M. and N. Komodakis. (2017). “Dynamic edge-conditioned
filters in convolutional neural networks on graphs”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 3693–3702.

Song, L., D. Gildea, Y. Zhang, Z. Wang, and J. Su. (2019). “Semantic neural
machine translation using AMR”. Transactions of the Association for
Computational Linguistics. 7: 19–31.

Song, L., X. Peng, Y. Zhang, Z. Wang, and D. Gildea. (2017). “AMR-to-text
Generation with Synchronous Node Replacement Grammar”. In: Proceed-
ings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). 7–13.

https://doi.org/10.1609/aaai.v34i05.6408
https://ojs.aaai.org/index.php/AAAI/article/view/6408
https://ojs.aaai.org/index.php/AAAI/article/view/6408
https://doi.org/10.18653/v1/N18-2074
https://www.aclweb.org/anthology/N18-2074
https://www.aclweb.org/anthology/N18-2074

References 171

Song, L., A. Wang, J. Su, Y. Zhang, K. Xu, Y. Ge, and D. Yu. (2020). “Struc-
tural Information Preserving for Graph-to-Text Generation”. In: Proceed-
ings of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics. 7987–
7998. DOI: 10.18653/v1/2020.acl-main.712. URL: https://www.aclweb.
org/anthology/2020.acl-main.712.

Song, L., Z. Wang, W. Hamza, Y. Zhang, and D. Gildea. (2018a). “Leveraging
context information for natural question generation”. In: Proceedings of
the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers). 569–574.

Song, L., Z. Wang, M. Yu, Y. Zhang, R. Florian, and D. Gildea. (2018b). “Ex-
ploring graph-structured passage representation for multi-hop reading com-
prehension with graph neural networks”. arXiv preprint arXiv:1809.02040.

Song, L., Y. Zhang, Z. Wang, and D. Gildea. (2018c). “A Graph-to-Sequence
Model for AMR-to-Text Generation”. In: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Melbourne, Australia: Association for Computational Linguistics.
1616–1626. DOI: 10.18653/v1/P18-1150. URL: https://www.aclweb.org/
anthology/P18-1150.

Song, L., Y. Zhang, Z. Wang, and D. Gildea. (2018d). “A graph-to-sequence
model for amr-to-text generation”. arXiv preprint arXiv:1805.02473.

Song, L., Y. Zhang, Z. Wang, and D. Gildea. (2018e). “N-ary Relation Ex-
traction using Graph-State LSTM”. In: Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing. Brussels,
Belgium: Association for Computational Linguistics. 2226–2235. DOI:
10.18653/v1/D18-1246. URL: https://www.aclweb.org/anthology/D18-
1246.

Sorokin, D. and I. Gurevych. (2018a). “Modeling Semantics with Gated Graph
Neural Networks for Knowledge Base Question Answering”. In: Proceed-
ings of the 27th International Conference on Computational Linguistics,
COLING 2018, Santa Fe, New Mexico, USA, August 20-26, 2018. Ed. by
E. M. Bender, L. Derczynski, and P. Isabelle. Association for Computa-
tional Linguistics. 3306–3317.

https://doi.org/10.18653/v1/2020.acl-main.712
https://www.aclweb.org/anthology/2020.acl-main.712
https://www.aclweb.org/anthology/2020.acl-main.712
https://doi.org/10.18653/v1/P18-1150
https://www.aclweb.org/anthology/P18-1150
https://www.aclweb.org/anthology/P18-1150
https://doi.org/10.18653/v1/D18-1246
https://www.aclweb.org/anthology/D18-1246
https://www.aclweb.org/anthology/D18-1246

172 References

Sorokin, D. and I. Gurevych. (2018b). “Modeling semantics with gated graph
neural networks for knowledge base question answering”. arXiv preprint
arXiv:1808.04126.

Speer, R., J. Chin, and C. Havasi. (2017). “Conceptnet 5.5: An open multilin-
gual graph of general knowledge”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 31. No. 1.

Su, D., Y. Xu, W. Dai, Z. Ji, T. Yu, and P. Fung. (2020). “Multi-hop Ques-
tion Generation with Graph Convolutional Network”. In: Findings of the
Association for Computational Linguistics: EMNLP 2020. Online: Asso-
ciation for Computational Linguistics. 4636–4647. DOI: 10.18653/v1/
2020.findings-emnlp.416. URL: https://www.aclweb.org/anthology/2020.
findings-emnlp.416.

Suchanek, F. M., G. Kasneci, and G. Weikum. (2008). “Yago: A large ontology
from wikipedia and wordnet”. Journal of Web Semantics. 6(3): 203–217.

Sui, D., Y. Chen, K. Liu, J. Zhao, and S. Liu. (2019). “Leverage lexical
knowledge for chinese named entity recognition via collaborative graph
network”. In: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP). 3821–3831.

Sukhbaatar, S., A. Szlam, J. Weston, and R. Fergus. (2015). “End-to-end
memory networks”. In: Proceedings of the 28th International Conference
on Neural Information Processing Systems-Volume 2. 2440–2448.

Sun, C., Y. Gong, Y. Wu, M. Gong, D. Jiang, M. Lan, S. Sun, and N. Duan.
(2019a). “Joint Type Inference on Entities and Relations via Graph Con-
volutional Networks”. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence, Italy: Association
for Computational Linguistics. 1361–1370. DOI: 10.18653/v1/P19-1131.
URL: https://www.aclweb.org/anthology/P19-1131.

Sun, H., T. Bedrax-Weiss, and W. Cohen. (2019b). “PullNet: Open Domain
Question Answering with Iterative Retrieval on Knowledge Bases and
Text”. In: Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics. 2380–2390. DOI: 10.18653/
v1/D19-1242. URL: https://www.aclweb.org/anthology/D19-1242.

https://doi.org/10.18653/v1/2020.findings-emnlp.416
https://doi.org/10.18653/v1/2020.findings-emnlp.416
https://www.aclweb.org/anthology/2020.findings-emnlp.416
https://www.aclweb.org/anthology/2020.findings-emnlp.416
https://doi.org/10.18653/v1/P19-1131
https://www.aclweb.org/anthology/P19-1131
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/D19-1242
https://www.aclweb.org/anthology/D19-1242

References 173

Sun, H., B. Dhingra, M. Zaheer, K. Mazaitis, R. Salakhutdinov, and W. Co-
hen. (2018a). “Open Domain Question Answering Using Early Fusion
of Knowledge Bases and Text”. In: Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing. Brussels,
Belgium: Association for Computational Linguistics. 4231–4242. DOI:
10.18653/v1/D18-1455. URL: https://www.aclweb.org/anthology/D18-
1455.

Sun, K., R. Zhang, S. Mensah, Y. Mao, and X. Liu. (2019c). “Aspect-Level
Sentiment Analysis Via Convolution over Dependency Tree”. In: Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP). Hong Kong, China: Association for
Computational Linguistics. 5679–5688. DOI: 10.18653/v1/D19-1569.
URL: https://www.aclweb.org/anthology/D19-1569.

Sun, T., Y. Shao, X. Qiu, Q. Guo, Y. Hu, X. Huang, and Z. Zhang. (2020a).
“CoLAKE: Contextualized Language and Knowledge Embedding”. In:
Proceedings of the 28th International Conference on Computational Lin-
guistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020.
International Committee on Computational Linguistics. 3660–3670.

Sun, Y., J. Han, X. Yan, P. S. Yu, and T. Wu. (2011). “Pathsim: Meta path-
based top-k similarity search in heterogeneous information networks”.
Proceedings of the VLDB Endowment. 4(11): 992–1003.

Sun, Z., W. Hu, and C. Li. (2017). “Cross-lingual entity alignment via joint
attribute-preserving embedding”. In: International Semantic Web Confer-
ence. Springer. 628–644.

Sun, Z., W. Hu, Q. Zhang, and Y. Qu. (2018b). “Bootstrapping Entity Align-
ment with Knowledge Graph Embedding.” In: IJCAI. Vol. 18. 4396–4402.

Sun, Z., C. Wang, W. Hu, M. Chen, J. Dai, W. Zhang, and Y. Qu. (2020b).
“Knowledge graph alignment network with gated multi-hop neighbor-
hood aggregation”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 34. No. 01. 222–229.

Sun, Z., Q. Zhu, Y. Xiong, Y. Sun, L. Mou, and L. Zhang. (2020c). “Treegen: A
tree-based transformer architecture for code generation”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 05. 8984–
8991.

https://doi.org/10.18653/v1/D18-1455
https://www.aclweb.org/anthology/D18-1455
https://www.aclweb.org/anthology/D18-1455
https://doi.org/10.18653/v1/D19-1569
https://www.aclweb.org/anthology/D19-1569

174 References

Sutskever, I., O. Vinyals, and Q. V. Le. (2014). “Sequence to Sequence Learn-
ing with Neural Networks”. In: Advances in Neural Information Process-
ing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec, Canada. Ed. by
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-
berger. 3104–3112. URL: https://proceedings.neurips.cc/paper/2014/hash/
a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html.

Tai, K. S., R. Socher, and C. D. Manning. (2015). “Improved Semantic Repre-
sentations From Tree-Structured Long Short-Term Memory Networks”.
In: Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). 1556–1566.

Talmor, A. and J. Berant. (2018). “The Web as a Knowledge-Base for Answer-
ing Complex Questions”. In: Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers). 641–651.

Talmor, A., J. Herzig, N. Lourie, and J. Berant. (2019). “CommonsenseQA: A
Question Answering Challenge Targeting Commonsense Knowledge”. In:
NAACL-HLT (1).

Tang, D., B. Qin, X. Feng, and T. Liu. (2016). “Effective LSTMs for Target-
Dependent Sentiment Classification”. In: Proceedings of COLING 2016,
the 26th International Conference on Computational Linguistics: Techni-
cal Papers. 3298–3307.

Tang, H., D. Ji, C. Li, and Q. Zhou. (2020a). “Dependency Graph Enhanced
Dual-transformer Structure for Aspect-based Sentiment Classification”.
In: Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics. Online: Association for Computational Linguis-
tics. 6578–6588. DOI: 10 .18653/v1/2020.acl - main .588. URL: https :
//www.aclweb.org/anthology/2020.acl-main.588.

Tang, J., M. Qu, and Q. Mei. (2015). “Pte: Predictive text embedding through
large-scale heterogeneous text networks”. In: Proceedings of the 21th
ACM SIGKDD international conference on knowledge discovery and data
mining. 1165–1174.

https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.588
https://www.aclweb.org/anthology/2020.acl-main.588
https://www.aclweb.org/anthology/2020.acl-main.588

References 175

Tang, Z., Y. Shen, X. Ma, W. Xu, J. Yu, and W. Lu. (2020b). “Multi-hop
Reading Comprehension across Documents with Path-based Graph Con-
volutional Network”. In: Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020. Ed. by C. Bessiere.
ijcai.org. 3905–3911.

Tang, Z., Y. Shen, X. Ma, W. Xu, J. Yu, and W. Lu. (2020c). “Multi-hop reading
comprehension across documents with path-based graph convolutional
network”. arXiv preprint arXiv:2006.06478.

Tarau, P., R. Mihalcea, and E. Figa. (2005). “Semantic document engineer-
ing with WordNet and PageRank”. In: Proceedings of the 2005 ACM
symposium on Applied computing. 782–786.

Taylor, A., M. Marcus, and B. Santorini. (2003). “The Penn treebank: an
overview”. Treebanks: 5–22.

Teru, K., E. Denis, and W. Hamilton. (2020). “Inductive relation prediction by
subgraph reasoning”. In: International Conference on Machine Learning.
PMLR. 9448–9457.

Thayaparan, M., M. Valentino, V. Schlegel, and A. Freitas. (2019). “Identi-
fying Supporting Facts for Multi-hop Question Answering with Docu-
ment Graph Networks”. In: Proceedings of the Thirteenth Workshop on
Graph-Based Methods for Natural Language Processing (TextGraphs-
13). Hong Kong: Association for Computational Linguistics. 42–51. DOI:
10.18653/v1/D19-5306. URL: https://www.aclweb.org/anthology/D19-
5306.

Thompson, A. (2017). “All the news: 143,000 articles from 15 american
publications”.

Toutanova, K., D. Chen, P. Pantel, H. Poon, P. Choudhury, and M. Gamon.
(2015). “Representing text for joint embedding of text and knowledge
bases”. In: Proceedings of the 2015 conference on empirical methods in
natural language processing. 1499–1509.

Trischler, A., T. Wang, X. Yuan, J. Harris, A. Sordoni, P. Bachman, and K.
Suleman. (2017). “NewsQA: A Machine Comprehension Dataset”. In:
Proceedings of the 2nd Workshop on Representation Learning for NLP.
191–200.

Trouillon, T., J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. (2016). “Com-
plex embeddings for simple link prediction”. In: International Conference
on Machine Learning. PMLR. 2071–2080.

https://doi.org/10.18653/v1/D19-5306
https://www.aclweb.org/anthology/D19-5306
https://www.aclweb.org/anthology/D19-5306

176 References

Tsai, Y.-H. H., S. Bai, M. Yamada, L.-P. Morency, and R. Salakhutdinov.
(2019). “Transformer Dissection: An Unified Understanding for Trans-
former’s Attention via the Lens of Kernel”. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). 4335–4344.

Tu, M., G. Wang, J. Huang, Y. Tang, X. He, and B. Zhou. (2019a). “Multi-hop
Reading Comprehension across Multiple Documents by Reasoning over
Heterogeneous Graphs”. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence, Italy: Association
for Computational Linguistics. 2704–2713. DOI: 10.18653/v1/P19-1260.
URL: https://www.aclweb.org/anthology/P19-1260.

Tu, M., G. Wang, J. Huang, Y. Tang, X. He, and B. Zhou. (2019b). “Multi-hop
Reading Comprehension across Multiple Documents by Reasoning over
Heterogeneous Graphs”. In: Proceedings of the 57th Conference of the
Association for Computational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers. Ed. by A. Korhonen,
D. R. Traum, and L. Màrquez. Association for Computational Linguistics.
2704–2713.

Tu, Z., Z. Lu, Y. Liu, X. Liu, and H. Li. (2016). “Modeling coverage for neural
machine translation”. arXiv preprint arXiv:1601.04811.

Usbeck, R., A.-C. N. Ngomo, B. Haarmann, A. Krithara, M. Röder, and G.
Napolitano. (2017). “7th open challenge on question answering over linked
data (QALD-7)”. In: Semantic web evaluation challenge. Springer. 59–69.

Vashishth, S., R. Joshi, S. S. Prayaga, C. Bhattacharyya, and P. Talukdar.
(2018). “RESIDE: Improving Distantly-Supervised Neural Relation Ex-
traction using Side Information”. In: Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing. Brussels,
Belgium: Association for Computational Linguistics. 1257–1266. DOI:
10.18653/v1/D18-1157. URL: https://www.aclweb.org/anthology/D18-
1157.

Vashishth, S., S. Sanyal, V. Nitin, and P. Talukdar. (2019). “Composition-
based multi-relational graph convolutional networks”. arXiv preprint
arXiv:1911.03082.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser, and I. Polosukhin. (2017). “Attention is All you Need”. In: NIPS.

https://doi.org/10.18653/v1/P19-1260
https://www.aclweb.org/anthology/P19-1260
https://doi.org/10.18653/v1/D18-1157
https://www.aclweb.org/anthology/D18-1157
https://www.aclweb.org/anthology/D18-1157

References 177

Velickovic, P., L. Buesing, M. C. Overlan, R. Pascanu, O. Vinyals, and C.
Blundell. (2020). “Pointer Graph Networks”. In: Advances in Neural
Information Processing Systems.

Velickovic, P., G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio.
(2018). “Graph Attention Networks”. In: 6th International Conference on
Learning Representations.

Vinyals, O., S. Bengio, and M. Kudlur. (2016). “Order Matters: Sequence
to sequence for sets”. In: 4th International Conference on Learning Rep-
resentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Con-
ference Track Proceedings. Ed. by Y. Bengio and Y. LeCun. URL: http:
//arxiv.org/abs/1511.06391.

Vinyals, O., M. Fortunato, and N. Jaitly. (2015). “Pointer networks”. In:
Advances in Neural Information Processing Systems. 2692–2700.

Vitale, D., P. Ferragina, and U. Scaiella. (2012). “Classification of short texts by
deploying topical annotations”. In: European Conference on Information
Retrieval. Springer. 376–387.

Wan, S., Y. Lan, J. Guo, J. Xu, L. Pang, and X. Cheng. (2016). “A deep archi-
tecture for semantic matching with multiple positional sentence represen-
tations”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 30. No. 1.

Wang, D., P. Liu, Y. Zheng, X. Qiu, and X. Huang. (2020a). “Heterogeneous
Graph Neural Networks for Extractive Document Summarization”. In:
Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics. Online: Association for Computational Linguis-
tics. 6209–6219. DOI: 10 .18653/v1/2020.acl - main .553. URL: https :
//www.aclweb.org/anthology/2020.acl-main.553.

Wang, H., S. Li, R. Pan, and M. Mao. (2019a). “Incorporating Graph Attention
Mechanism into Knowledge Graph Reasoning Based on Deep Reinforce-
ment Learning”. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). Hong
Kong, China: Association for Computational Linguistics. 2623–2631. DOI:
10.18653/v1/D19-1264. URL: https://www.aclweb.org/anthology/D19-
1264.

http://arxiv.org/abs/1511.06391
http://arxiv.org/abs/1511.06391
https://doi.org/10.18653/v1/2020.acl-main.553
https://www.aclweb.org/anthology/2020.acl-main.553
https://www.aclweb.org/anthology/2020.acl-main.553
https://doi.org/10.18653/v1/D19-1264
https://www.aclweb.org/anthology/D19-1264
https://www.aclweb.org/anthology/D19-1264

178 References

Wang, K., W. Shen, Y. Yang, X. Quan, and R. Wang. (2020b). “Relational
Graph Attention Network for Aspect-based Sentiment Analysis”. In: Pro-
ceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics. 3229–
3238. DOI: 10.18653/v1/2020.acl-main.295. URL: https://www.aclweb.
org/anthology/2020.acl-main.295 (accessed on 12/26/2020).

Wang, L., Z. Xu, Z. Lin, H. Zheng, and Y. Shen. (2020c). “Answer-driven Deep
Question Generation based on Reinforcement Learning”. In: Proceed-
ings of the 28th International Conference on Computational Linguistics.
Barcelona, Spain (Online): International Committee on Computational
Linguistics. 5159–5170. DOI: 10.18653/v1/2020.coling-main.452. URL:
https://www.aclweb.org/anthology/2020.coling-main.452.

Wang, L., Z. Xu, Z. Lin, H. Zheng, and Y. Shen. (2020d). “Answer-driven Deep
Question Generation based on Reinforcement Learning”. In: Proceedings
of the 28th International Conference on Computational Linguistics, COL-
ING 2020, Barcelona, Spain (Online), December 8-13, 2020. Ed. by D.
Scott, N. Bel, and C. Zong. International Committee on Computational
Linguistics. 5159–5170.

Wang, M., L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang, C.
Ma, et al. (2019b). “Deep Graph Library: Towards Efficient and Scalable
Deep Learning on Graphs.”

Wang, P., J. Han, C. Li, and R. Pan. (2019c). “Logic attention based neigh-
borhood aggregation for inductive knowledge graph embedding”. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 7152–
7159.

Wang, R., D. Zhou, and Y. He. (2019d). “Atm: Adversarial-neural topic
model”. Information Processing & Management. 56(6): 102098.

Wang, S., B. Z. Li, M. Khabsa, H. Fang, and H. Ma. (2020e). “Linformer:
Self-Attention with Linear Complexity”. CoRR. abs/2006.04768. arXiv:
2006.04768. URL: https://arxiv.org/abs/2006.04768.

Wang, T., X. Wan, and H. Jin. (2020f). “AMR-To-Text Generation with Graph
Transformer”. Transactions of the Association for Computational Linguis-
tics. 8: 19–33.

https://doi.org/10.18653/v1/2020.acl-main.295
https://www.aclweb.org/anthology/2020.acl-main.295
https://www.aclweb.org/anthology/2020.acl-main.295
https://doi.org/10.18653/v1/2020.coling-main.452
https://www.aclweb.org/anthology/2020.coling-main.452
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768

References 179

Wang, T., X. Wan, and S. Yao. (2020g). “Better AMR-To-Text Generation with
Graph Structure Reconstruction”. In: Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI-20. Ed.
by C. Bessiere. International Joint Conferences on Artificial Intelligence
Organization. 3919–3925. DOI: 10.24963/ijcai.2020/542. URL: https:
//doi.org/10.24963/ijcai.2020/542.

Wang, X., H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu. (2019e). “Hetero-
geneous graph attention network”. In: The World Wide Web Conference.
2022–2032.

Wang, X., P. Kapanipathi, R. Musa, M. Yu, K. Talamadupula, I. Abdelaziz,
M. Chang, A. Fokoue, B. Makni, N. Mattei, and M. Witbrock. (2019f).
“Improving Natural Language Inference Using External Knowledge in
the Science Questions Domain”. Proceedings of the AAAI Conference
on Artificial Intelligence. 33(01): 7208–7215. DOI: 10.1609/aaai.v33i01.
33017208. URL: https://ojs.aaai.org/index.php/AAAI/article/view/4705.

Wang, Y., X. Liu, and S. Shi. (2017). “Deep neural solver for math word
problems”. In: Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing. 845–854.

Wang, Z., Q. Lv, X. Lan, and Y. Zhang. (2018). “Cross-lingual knowledge
graph alignment via graph convolutional networks”. In: Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing.
349–357.

Wang, Z., J. Yang, and X. Ye. (2020h). “Knowledge Graph Alignment with
Entity-Pair Embedding”. In: Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP). Online: Asso-
ciation for Computational Linguistics. 1672–1680. DOI: 10.18653/v1/2020.
emnlp-main.130. URL: https://www.aclweb.org/anthology/2020.emnlp-
main.130.

Wang, Z., Z. Ren, C. He, P. Zhang, and Y. Hu. (2019g). “Robust Embedding
with Multi-Level Structures for Link Prediction.” In: IJCAI. 5240–5246.

Welbl, J., P. Stenetorp, and S. Riedel. (2018). “Constructing datasets for
multi-hop reading comprehension across documents”. Transactions of the
Association for Computational Linguistics. 6: 287–302.

https://doi.org/10.24963/ijcai.2020/542
https://doi.org/10.24963/ijcai.2020/542
https://doi.org/10.24963/ijcai.2020/542
https://doi.org/10.1609/aaai.v33i01.33017208
https://doi.org/10.1609/aaai.v33i01.33017208
https://ojs.aaai.org/index.php/AAAI/article/view/4705
https://doi.org/10.18653/v1/2020.emnlp-main.130
https://doi.org/10.18653/v1/2020.emnlp-main.130
https://www.aclweb.org/anthology/2020.emnlp-main.130
https://www.aclweb.org/anthology/2020.emnlp-main.130

180 References

Williams, A., N. Nangia, and S. Bowman. (2018). “A Broad-Coverage Chal-
lenge Corpus for Sentence Understanding through Inference”. Proceedings
of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers). DOI: 10.18653/v1/n18-1101. URL: http://dx.doi.org/10.
18653/v1/N18-1101.

Williams, J. D., M. Henderson, A. Raux, B. Thomson, A. Black, and D.
Ramachandran. (2014). “The dialog state tracking challenge series”. AI
Magazine. 35(4): 121–124.

Williams, R. J. (1992). “Simple statistical gradient-following algorithms for
connectionist reinforcement learning”. Machine learning. 8(3-4): 229–
256.

Wu, J., M. Cao, J. C. K. Cheung, and W. L. Hamilton. (2020a). “TeMP:
Temporal Message Passing for Temporal Knowledge Graph Completion”.
In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Online: Association for Computational
Linguistics. 5730–5746. DOI: 10.18653/v1/2020.emnlp-main.462. URL:
https://www.aclweb.org/anthology/2020.emnlp-main.462.

Wu, L., P. Cui, J. Pei, and L. Zhao. (2022). Graph Neural Networks: Founda-
tions, Frontiers, and Applications. Singapore: Springer Singapore. 725.

Wu, Q., Q. Zhang, J. Fu, and X. Huang. (2020b). “A Knowledge-Aware
Sequence-to-Tree Network for Math Word Problem Solving”. In: Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Online: Association for Computational Linguis-
tics. 7137–7146. DOI: 10.18653/v1/2020.emnlp-main.579. URL: https:
//www.aclweb.org/anthology/2020.emnlp-main.579.

Wu, Y., X. Liu, Y. Feng, Z. Wang, R. Yan, and D. Zhao. (2019a). “Relation-
aware entity alignment for heterogeneous knowledge graphs”. In: Proceed-
ings of the 28th International Joint Conference on Artificial Intelligence.
AAAI Press. 5278–5284.

Wu, Y., X. Liu, Y. Feng, Z. Wang, and D. Zhao. (2019b). “Jointly Learning En-
tity and Relation Representations for Entity Alignment”. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). 240–249.

https://doi.org/10.18653/v1/n18-1101
http://dx.doi.org/10.18653/v1/N18-1101
http://dx.doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-main.462
https://www.aclweb.org/anthology/2020.emnlp-main.462
https://doi.org/10.18653/v1/2020.emnlp-main.579
https://www.aclweb.org/anthology/2020.emnlp-main.579
https://www.aclweb.org/anthology/2020.emnlp-main.579

References 181

Wu, Z., R. Koncel-Kedziorski, M. Ostendorf, and H. Hajishirzi. (2020c).
“Extracting Summary Knowledge Graphs from Long Documents”. arXiv
preprint arXiv:2009.09162.

Xia, M., G. Huang, L. Liu, and S. Shi. (2019). “Graph Based Translation Mem-
ory for Neural Machine Translation”. Proceedings of the AAAI Conference
on Artificial Intelligence. 33(01): 7297–7304. DOI: 10.1609/aaai.v33i01.
33017297. URL: https://ojs.aaai.org/index.php/AAAI/article/view/4716.

Xia, Q., R. Wang, Z. Li, Y. Zhang, and M. Zhang. (2020). “Semantic Role
Labeling with Heterogeneous Syntactic Knowledge”. In: Proceedings of
the 28th International Conference on Computational Linguistics. 2979–
2990.

Xiao, F., J. Li, H. Zhao, R. Wang, and K. Chen. (2019). “Lattice-Based
Transformer Encoder for Neural Machine Translation”. In: Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics. 3090–3097.
DOI: 10.18653/v1/P19-1298. URL: https://www.aclweb.org/anthology/
P19-1298.

Xie, Z., G. Zhou, J. Liu, and X. Huang. (2020). “ReInceptionE: Relation-
aware inception network with joint local-global structural information
for knowledge graph embedding”. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. 5929–5939.

Xiong, C., V. Zhong, and R. Socher. (2017a). “Dynamic Coattention Networks
For Question Answering”. In: 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Confer-
ence Track Proceedings. OpenReview.net. URL: https://openreview.net/
forum?id=rJeKjwvclx.

Xiong, W., T. Hoang, and W. Y. Wang. (2017b). “DeepPath: A Reinforcement
Learning Method for Knowledge Graph Reasoning”. In: Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing.
564–573.

Xu, J., Z. Gan, Y. Cheng, and J. Liu. (2020a). “Discourse-aware neural extrac-
tive text summarization”. In: Proceedings of the 58th annual meeting of
the association for computational linguistics. 5021–5031.

Xu, K., L. Song, Y. Feng, Y. Song, and D. Yu. (2020b). “Coordinated Rea-
soning for Cross-Lingual Knowledge Graph Alignment”. arXiv preprint
arXiv:2001.08728.

https://doi.org/10.1609/aaai.v33i01.33017297
https://doi.org/10.1609/aaai.v33i01.33017297
https://ojs.aaai.org/index.php/AAAI/article/view/4716
https://doi.org/10.18653/v1/P19-1298
https://www.aclweb.org/anthology/P19-1298
https://www.aclweb.org/anthology/P19-1298
https://openreview.net/forum?id=rJeKjwvclx
https://openreview.net/forum?id=rJeKjwvclx

182 References

Xu, K., L. Wang, M. Yu, Y. Feng, Y. Song, Z. Wang, and D. Yu. (2019a).
“Cross-lingual Knowledge Graph Alignment via Graph Matching Neural
Network”. In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. Florence, Italy: Association for Compu-
tational Linguistics. 3156–3161. DOI: 10 . 18653 / v1 / P19 - 1304. URL:
https://www.aclweb.org/anthology/P19-1304.

Xu, K., L. Wu, Z. Wang, Y. Feng, and V. Sheinin. (2018a). “SQL-to-Text
Generation with Graph-to-Sequence Model”. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. Brus-
sels, Belgium: Association for Computational Linguistics. 931–936. DOI:
10.18653/v1/D18-1112. URL: https://www.aclweb.org/anthology/D18-
1112.

Xu, K., L. Wu, Z. Wang, Y. Feng, M. Witbrock, and V. Sheinin. (2018b).
“Graph2seq: Graph to sequence learning with attention-based neural net-
works”. arXiv preprint arXiv:1804.00823.

Xu, K., L. Wu, Z. Wang, M. Yu, L. Chen, and V. Sheinin. (2018c). “Exploiting
Rich Syntactic Information for Semantic Parsing with Graph-to-Sequence
Model”. In: Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing. Brussels, Belgium: Association for Com-
putational Linguistics. 918–924. DOI: 10 .18653 /v1 /D18- 1110. URL:
https://www.aclweb.org/anthology/D18-1110.

Xu, M., L. Li, D. F. Wai, Q. Liu, and L. S. Chao. (2020c). “Document Graph
for Neural Machine Translation”. ArXiv. abs/2012.03477.

Xu, X., W. Feng, Y. Jiang, X. Xie, Z. Sun, and Z.-H. Deng. (2019b). “Dy-
namically Pruned Message Passing Networks for Large-Scale Knowledge
Graph Reasoning”. arXiv preprint arXiv:1909.11334.

Yan, H., X. Jin, X. Meng, J. Guo, and X. Cheng. (2019). “Event Detection with
Multi-Order Graph Convolution and Aggregated Attention”. In: Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP). Hong Kong, China: Association for
Computational Linguistics. 5766–5770. DOI: 10.18653/v1/D19-1582.
URL: https://www.aclweb.org/anthology/D19-1582.

Yang, B., W.-t. Yih, X. He, J. Gao, and L. Deng. (2014). “Embedding enti-
ties and relations for learning and inference in knowledge bases”. arXiv
preprint arXiv:1412.6575.

https://doi.org/10.18653/v1/P19-1304
https://www.aclweb.org/anthology/P19-1304
https://doi.org/10.18653/v1/D18-1112
https://www.aclweb.org/anthology/D18-1112
https://www.aclweb.org/anthology/D18-1112
https://doi.org/10.18653/v1/D18-1110
https://www.aclweb.org/anthology/D18-1110
https://doi.org/10.18653/v1/D19-1582
https://www.aclweb.org/anthology/D19-1582

References 183

Yang, H.-W., Y. Zou, P. Shi, W. Lu, J. Lin, and S. Xu. (2019). “Aligning
Cross-Lingual Entities with Multi-Aspect Information”. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). 4422–4432.

Yang, K. and J. Deng. (2020). “Strongly Incremental Constituency Parsing
with Graph Neural Networks”. arXiv preprint arXiv:2010.14568.

Yang, L., F. Wu, J. Gu, C. Wang, X. Cao, D. Jin, and Y. Guo. (2020). “Graph
Attention Topic Modeling Network”. In: Proceedings of The Web Confer-
ence 2020. WWW ’20. New York, NY, USA: Association for Computing
Machinery. 144–154. ISBN: 978-1-4503-7023-3. DOI: 10.1145/3366423.
3380102. URL: http://doi.org/10.1145/3366423.3380102 (accessed on
12/25/2020).

Yang, L., Q. Ai, J. Guo, and W. B. Croft. (2016). “aNMM: Ranking short
answer texts with attention-based neural matching model”. In: Proceed-
ings of the 25th ACM international on conference on information and
knowledge management. 287–296.

Yang, Z., P. Qi, S. Zhang, Y. Bengio, W. Cohen, R. Salakhutdinov, and C. D.
Manning. (2018a). “HotpotQA: A Dataset for Diverse, Explainable Multi-
hop Question Answering”. In: Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. 2369–2380.

Yang, Z., J. Zhao, B. Dhingra, K. He, W. W. Cohen, R. R. Salakhutdinov,
and Y. LeCun. (2018b). “Glomo: Unsupervised learning of transferable
relational graphs”. In: Advances in Neural Information Processing Systems.
8950–8961.

Yao, L., C. Mao, and Y. Luo. (2019a). “Graph Convolutional Networks for
Text Classification”. In: The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Ar-
tificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019. AAAI Press. 7370–7377.

Yao, L., C. Mao, and Y. Luo. (2019b). “Graph convolutional networks for text
classification”. In: Proc. AAAI Conf. Artif. Intell. Vol. 33. 7370–7377.

Yao, S., T. Wang, and X. Wan. (2020). “Heterogeneous graph transformer for
graph-to-sequence learning”. In: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. 7145–7154.

https://doi.org/10.1145/3366423.3380102
https://doi.org/10.1145/3366423.3380102
http://doi.org/10.1145/3366423.3380102

184 References

Yao, T., Y. Pan, Y. Li, and T. Mei. (2018). “Exploring visual relationship
for image captioning”. In: Proceedings of the European conference on
computer vision (ECCV). 684–699.

Yasunaga, M., H. Ren, A. Bosselut, P. Liang, and J. Leskovec. (2021). “QA-
GNN: Reasoning with Language Models and Knowledge Graphs for
Question Answering”.

Yasunaga, M., R. Zhang, K. Meelu, A. Pareek, K. Srinivasan, and D. Radev.
(2017). “Graph-based Neural Multi-Document Summarization”. In: Pro-
ceedings of the 21st Conference on Computational Natural Language
Learning (CoNLL 2017). Vancouver, Canada: Association for Computa-
tional Linguistics. 452–462. DOI: 10.18653/v1/K17-1045. URL: https:
//www.aclweb.org/anthology/K17-1045.

Ye, R., X. Li, Y. Fang, H. Zang, and M. Wang. (2019). “A Vectorized Relational
Graph Convolutional Network for Multi-Relational Network Alignment.”
In: IJCAI. 4135–4141.

Yih, W.-t., M.-W. Chang, X. He, and J. Gao. (2015). “Semantic Parsing via
Staged Query Graph Generation: Question Answering with Knowledge
Base”. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers). 1321–1331.

Yih, W.-t., M. Richardson, C. Meek, M.-W. Chang, and J. Suh. (2016). “The
value of semantic parse labeling for knowledge base question answer-
ing”. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). 201–206.

Yin, P., G. Neubig, M. Allamanis, M. Brockschmidt, and A. L. Gaunt. (2018).
“Learning to represent edits”. arXiv preprint arXiv:1810.13337.

Yin, Y., F. Meng, J. Su, C. Zhou, Z. Yang, J. Zhou, and J. Luo. (2020). “A
Novel Graph-based Multi-modal Fusion Encoder for Neural Machine
Translation”. In: Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics. Online: Association for Computational
Linguistics. 3025–3035. DOI: 10.18653/v1/2020.acl- main.273. URL:
https://www.aclweb.org/anthology/2020.acl-main.273.

Ying, R., J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec. (2018).
“Hierarchical graph representation learning with differentiable pooling”.
arXiv preprint arXiv:1806.08804.

https://doi.org/10.18653/v1/K17-1045
https://www.aclweb.org/anthology/K17-1045
https://www.aclweb.org/anthology/K17-1045
https://doi.org/10.18653/v1/2020.acl-main.273
https://www.aclweb.org/anthology/2020.acl-main.273

References 185

Yu, T., R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li, Q. Yao, S.
Roman, Z. Zhang, and D. Radev. (2018). “Spider: A Large-Scale Human-
Labeled Dataset for Complex and Cross-Domain Semantic Parsing and
Text-to-SQL Task”. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Brussels, Belgium: Association
for Computational Linguistics. 3911–3921. DOI: 10.18653/v1/D18-1425.
URL: https://www.aclweb.org/anthology/D18-1425.

Yun, S., M. Jeong, R. Kim, J. Kang, and H. J. Kim. (2019). “Graph Trans-
former Networks”. Advances in Neural Information Processing Systems.
32: 11983–11993.

Zellers, R., Y. Bisk, R. Schwartz, and Y. Choi. (2018). “Swag: A large-scale
adversarial dataset for grounded commonsense inference”. arXiv preprint
arXiv:1808.05326.

Zeng, S., R. Xu, B. Chang, and L. Li. (2020). “Double Graph Based Rea-
soning for Document-level Relation Extraction”. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Online: Association for Computational Linguistics. 1630–1640.
DOI: 10.18653/v1/2020.emnlp-main.127. URL: https://www.aclweb.org/
anthology/2020.emnlp-main.127.

Zhang, B., Y. Zhang, R. Wang, Z. Li, and M. Zhang. (2020a). “Syntax-aware
opinion role labeling with dependency graph convolutional networks”. In:
Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics. 3249–3258.

Zhang, C., Q. Li, and D. Song. (2019a). “Aspect-based Sentiment Classifica-
tion with Aspect-specific Graph Convolutional Networks”. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Com-
putational Linguistics. 4568–4578. DOI: 10.18653/v1/D19-1464. URL:
https://www.aclweb.org/anthology/D19-1464 (accessed on 12/26/2020).

Zhang, C., D. Song, C. Huang, A. Swami, and N. V. Chawla. (2019b). “Hetero-
geneous graph neural network”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 793–
803.

Zhang, C., D. Song, C. Huang, A. Swami, and N. V. Chawla. (2019c). “Het-
erogeneous Graph Neural Network”. In: KDD.

https://doi.org/10.18653/v1/D18-1425
https://www.aclweb.org/anthology/D18-1425
https://doi.org/10.18653/v1/2020.emnlp-main.127
https://www.aclweb.org/anthology/2020.emnlp-main.127
https://www.aclweb.org/anthology/2020.emnlp-main.127
https://doi.org/10.18653/v1/D19-1464
https://www.aclweb.org/anthology/D19-1464

186 References

Zhang, J., L. Wang, R. K.-W. Lee, Y. Bin, Y. Wang, J. Shao, and E.-P. Lim.
(2020b). “Graph-to-Tree Learning for Solving Math Word Problems”.
In: Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics. Online: Association for Computational Linguis-
tics. 3928–3937. DOI: 10 .18653/v1/2020.acl - main .362. URL: https :
//www.aclweb.org/anthology/2020.acl-main.362.

Zhang, M. and T. Qian. (2020). “Convolution over Hierarchical Syntactic
and Lexical Graphs for Aspect Level Sentiment Analysis”. In: Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Online: Association for Computational Linguis-
tics. 3540–3549. DOI: 10.18653/v1/2020.emnlp-main.286. URL: https:
//www.aclweb.org/anthology/2020.emnlp-main.286.

Zhang, N., S. Deng, J. Li, X. Chen, W. Zhang, and H. Chen. (2020c). “Sum-
marizing Chinese Medical Answer with Graph Convolution Networks
and Question-focused Dual Attention”. In: Findings of the Association for
Computational Linguistics: EMNLP 2020. Online: Association for Com-
putational Linguistics. 15–24. DOI: 10.18653/v1/2020.findings-emnlp.2.
URL: https://www.aclweb.org/anthology/2020.findings-emnlp.2.

Zhang, N., S. Deng, Z. Sun, G. Wang, X. Chen, W. Zhang, and H. Chen.
(2019d). “Long-tail Relation Extraction via Knowledge Graph Embed-
dings and Graph Convolution Networks”. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for Computa-
tional Linguistics. 3016–3025. DOI: 10.18653/v1/N19-1306. URL: https:
//www.aclweb.org/anthology/N19-1306.

Zhang, S., X. Liu, J. Liu, J. Gao, K. Duh, and B. Van Durme. (2018a). “Record:
Bridging the gap between human and machine commonsense reading
comprehension”. arXiv preprint arXiv:1810.12885.

Zhang, S., X. Ma, K. Duh, and B. Van Durme. (2019e). “AMR Parsing as
Sequence-to-Graph Transduction”. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. 80–94.

https://doi.org/10.18653/v1/2020.acl-main.362
https://www.aclweb.org/anthology/2020.acl-main.362
https://www.aclweb.org/anthology/2020.acl-main.362
https://doi.org/10.18653/v1/2020.emnlp-main.286
https://www.aclweb.org/anthology/2020.emnlp-main.286
https://www.aclweb.org/anthology/2020.emnlp-main.286
https://doi.org/10.18653/v1/2020.findings-emnlp.2
https://www.aclweb.org/anthology/2020.findings-emnlp.2
https://doi.org/10.18653/v1/N19-1306
https://www.aclweb.org/anthology/N19-1306
https://www.aclweb.org/anthology/N19-1306

References 187

Zhang, S., X. Ma, K. Duh, and B. Van Durme. (2019f). “AMR Parsing as
Sequence-to-Graph Transduction”. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. Florence, Italy:
Association for Computational Linguistics. 80–94. DOI: 10.18653/v1/P19-
1009. URL: https://www.aclweb.org/anthology/P19-1009.

Zhang, X., J. Zhao, and Y. LeCun. (2015). “Character-level convolutional
networks for text classification”. arXiv preprint arXiv:1509.01626.

Zhang, Y., Z. Guo, Z. Teng, W. Lu, S. B. Cohen, Z. Liu, and L. Bing. (2020d).
“Lightweight, Dynamic Graph Convolutional Networks for AMR-to-Text
Generation”. In: Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP). Online: Association for
Computational Linguistics. 2162–2172. DOI: 10.18653/v1/2020.emnlp-
main.169. URL: https://www.aclweb.org/anthology/2020.emnlp-main.169.

Zhang, Y., W. Chan, and N. Jaitly. (2017a). “Very deep convolutional net-
works for end-to-end speech recognition”. In: 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
4845–4849.

Zhang, Y., Q. Liu, and L. Song. (2018b). “Sentence-State LSTM for Text
Representation”. In: Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers). 317–
327.

Zhang, Y., X. Yu, Z. Cui, S. Wu, Z. Wen, and L. Wang. (2020e). “Every
Document Owns Its Structure: Inductive Text Classification via Graph
Neural Networks”. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-
10, 2020. Ed. by D. Jurafsky, J. Chai, N. Schluter, and J. R. Tetreault.
Association for Computational Linguistics. 334–339.

Zhang, Y., X. Yu, Z. Cui, S. Wu, Z. Wen, and L. Wang. (2020f). “Every
document owns its structure: Inductive text classification via graph neural
networks”. arXiv preprint arXiv:2004.13826.

Zhang, Y., P. Qi, and C. D. Manning. (2018c). “Graph Convolution over Pruned
Dependency Trees Improves Relation Extraction”. In: Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing.
Brussels, Belgium: Association for Computational Linguistics. 2205–2215.
DOI: 10.18653/v1/D18-1244. URL: https://www.aclweb.org/anthology/
D18-1244.

https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://www.aclweb.org/anthology/P19-1009
https://doi.org/10.18653/v1/2020.emnlp-main.169
https://doi.org/10.18653/v1/2020.emnlp-main.169
https://www.aclweb.org/anthology/2020.emnlp-main.169
https://doi.org/10.18653/v1/D18-1244
https://www.aclweb.org/anthology/D18-1244
https://www.aclweb.org/anthology/D18-1244

188 References

Zhang, Y., V. Zhong, D. Chen, G. Angeli, and C. D. Manning. (2017b).
“Position-aware attention and supervised data improve slot filling”. In:
Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. 35–45.

Zhang, Y., H. Dai, Z. Kozareva, A. Smola, and L. Song. (2018d). “Variational
reasoning for question answering with knowledge graph”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 32. No. 1.

Zhang, Z., F. Zhuang, H. Zhu, Z.-P. Shi, H. Xiong, and Q. He. (2020g). “Rela-
tional Graph Neural Network with Hierarchical Attention for Knowledge
Graph Completion.” In: AAAI. 9612–9619.

Zhao, J., X. Wang, C. Shi, B. Hu, G. Song, and Y. Ye. (2021). “Heterogeneous
Graph Structure Learning for Graph Neural Networks”. In: Proceedings
of the AAAI Conference on Artificial Intelligence.

Zhao, L., W. Xu, and J. Guo. (2020a). “Improving Abstractive Dialogue Sum-
marization with Graph Structures and Topic Words”. In: Proceedings of the
28th International Conference on Computational Linguistics. Barcelona,
Spain (Online): International Committee on Computational Linguistics.
437–449. URL: https://www.aclweb.org/anthology/2020.coling-main.39.

Zhao, Y., L. Chen, Z. Chen, R. Cao, S. Zhu, and K. Yu. (2020b). “Line Graph
Enhanced AMR-to-Text Generation with Mix-Order Graph Attention
Networks”. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Online: Association for Computational
Linguistics. 732–741. DOI: 10.18653/v1/2020.acl-main.67. URL: https:
//www.aclweb.org/anthology/2020.acl-main.67.

Zhao, Y., L. Xiang, J. Zhu, J. Zhang, Y. Zhou, and C. Zong. (2020c). “Knowl-
edge Graph Enhanced Neural Machine Translation via Multi-task Learn-
ing on Sub-entity Granularity”. In: Proceedings of the 28th International
Conference on Computational Linguistics. Barcelona, Spain (Online): In-
ternational Committee on Computational Linguistics. 4495–4505. URL:
https://www.aclweb.org/anthology/2020.coling-main.397.

Zheng, B., H. Wen, Y. Liang, N. Duan, W. Che, D. Jiang, M. Zhou, and T. Liu.
(2020). “Document Modeling with Graph Attention Networks for Multi-
grained Machine Reading Comprehension”. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020. Ed. by D. Jurafsky, J. Chai, N. Schluter, and
J. R. Tetreault. Association for Computational Linguistics. 6708–6718.

https://www.aclweb.org/anthology/2020.coling-main.39
https://doi.org/10.18653/v1/2020.acl-main.67
https://www.aclweb.org/anthology/2020.acl-main.67
https://www.aclweb.org/anthology/2020.acl-main.67
https://www.aclweb.org/anthology/2020.coling-main.397

References 189

Zheng, C. and P. Kordjamshidi. (2020). “SRLGRN: Semantic Role Labeling
Graph Reasoning Network”. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 8881–
8891.

Zhong, V., C. Xiong, and R. Socher. (2017). “Seq2sql: Generating struc-
tured queries from natural language using reinforcement learning”. arXiv
preprint arXiv:1709.00103.

Zhou, D., X. Hu, and R. Wang. (2020a). “Neural Topic Modeling by Incorpo-
rating Document Relationship Graph”. In: Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP).
Online: Association for Computational Linguistics. 3790–3796. DOI: 10.
18653/v1/2020.emnlp-main.310. URL: https://www.aclweb.org/anthology/
2020.emnlp-main.310 (accessed on 12/26/2020).

Zhou, H., T. Young, M. Huang, H. Zhao, J. Xu, and X. Zhu. (2018a). “Com-
monsense knowledge aware conversation generation with graph attention.”
In: IJCAI. 4623–4629.

Zhou, Q., Y. Zhang, D. Ji, and H. Tang. (2020b). “AMR Parsing with Latent
Structural Information”. In: Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Online: Association for
Computational Linguistics. 4306–4319. DOI: 10 .18653/v1/2020.acl -
main.397. URL: https://www.aclweb.org/anthology/2020.acl-main.397.

Zhou, Q., N. Yang, F. Wei, S. Huang, M. Zhou, and T. Zhao. (2018b). “Neural
document summarization by jointly learning to score and select sentences”.
arXiv preprint arXiv:1807.02305.

Zhu, H., Y. Lin, Z. Liu, J. Fu, T.-S. Chua, and M. Sun. (2019a). “Graph Neural
Networks with Generated Parameters for Relation Extraction”. In: Pro-
ceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computational Linguistics.
1331–1339. DOI: 10.18653/v1/P19-1128. URL: https://www.aclweb.org/
anthology/P19-1128.

https://doi.org/10.18653/v1/2020.emnlp-main.310
https://doi.org/10.18653/v1/2020.emnlp-main.310
https://www.aclweb.org/anthology/2020.emnlp-main.310
https://www.aclweb.org/anthology/2020.emnlp-main.310
https://doi.org/10.18653/v1/2020.acl-main.397
https://doi.org/10.18653/v1/2020.acl-main.397
https://www.aclweb.org/anthology/2020.acl-main.397
https://doi.org/10.18653/v1/P19-1128
https://www.aclweb.org/anthology/P19-1128
https://www.aclweb.org/anthology/P19-1128

190 References

Zhu, J., J. Li, M. Zhu, L. Qian, M. Zhang, and G. Zhou. (2019b). “Modeling
Graph Structure in Transformer for Better AMR-to-Text Generation”. In:
Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association
for Computational Linguistics. 5459–5468. DOI: 10.18653/v1/D19-1548.
URL: https://www.aclweb.org/anthology/D19-1548.

Zhu, J., J. Li, M. Zhu, L. Qian, M. Zhang, and G. Zhou. (2019c). “Modeling
Graph Structure in Transformer for Better AMR-to-Text Generation”. In:
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics. 5458–
5467.

Zhu, Q., Z. Feng, and X. Li. (2018). “GraphBTM: Graph Enhanced Autoen-
coded Variational Inference for Biterm Topic Model”. In: Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing. Brussels, Belgium: Association for Computational Linguistics.
4663–4672. DOI: 10.18653/v1/D18-1495. URL: https://www.aclweb.org/
anthology/D18-1495 (accessed on 12/26/2020).

https://doi.org/10.18653/v1/D19-1548
https://www.aclweb.org/anthology/D19-1548
https://doi.org/10.18653/v1/D18-1495
https://www.aclweb.org/anthology/D18-1495
https://www.aclweb.org/anthology/D18-1495

	Introduction
	Graph Based Algorithms for NLP
	Graph Neural Networks
	Graph Construction Methods for NLP
	Graph Representation Learning for NLP
	GNN Based Encoder-Decoder Models
	Applications
	General Challenges and Future Directions
	Conclusions
	References

