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Abstract

Conversational machine reading comprehension
(MRC) has proven significantly more challeng-
ing compared to traditional MRC since it requires
better utilization of conversation history. How-
ever, most existing approaches do not effectively
capture conversation history and thus have trou-
ble handling questions involving coreference or
ellipsis. We propose a novel graph neural net-
work (GNN) based model, namely GRAPHFLOW,
which captures conversational flow in the dialog.
Specifically, we first propose a new approach to
dynamically construct a question-aware context
graph from passage text at each turn. We then
present a novel flow mechanism to model the tem-
poral dependencies in the sequence of context
graphs. The proposed GRAPHFLOW model shows
superior performance compared to existing state-
of-the-art methods. For instance, GRAPHFLOW
outperforms two recently proposed models on the
CoQA benchmark dataset: FLOWQA by 2.3%
and SDNet by 0.7% on F1 score, respectively.

1. Introduction
Recent years have observed a surge of interest in conversa-
tional machine reading comprehension (MRC). Unlike the
traditional setting of MRC that requires answering a single
question given a passage (aka context), the conversational
MRC task is to answer the current question in a conversa-
tion given a passage and the previous questions and answers.
The goal of this task is to mimic real-world situations where
humans seek information in a conversational manner.

Despite the success existing works have achieved on tradi-
tional MRC (e.g., SQuAD (Rajpurkar et al., 2016)), con-
versational MRC has proven significantly more challenging
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when the conversations are incorporated into the MRC task.
During a conversation (Reddy et al., 2018; Choi et al., 2018),
it has been observed that shifts of focus happen frequently
and many questions refer back to the conversation history
via either coreference or ellipsis. We model conversation
flow as a sequence of latent states in the dialog and learn
important latent states associated with these shifts of focus.

To cope with the above challenges, we propose GRAPH-
FLOW, a Graph Neural Network (GNN) based model for
conversational MRC. As shown in Fig. 1, GRAPHFLOW
consists of three components, Encoding layer, Reasoning
layer, and Prediction layer. The Encoding layer encodes con-
versation history and the context text that aligns question
embeddings. The Reasoning layer dynamically constructs
a question-aware context graph at each turn, and then ap-
plies GNNs to process the sequence of context graphs. In
particular, the graph node embedding outputs of the reason-
ing process at the previous turn are used as a starting state
when reasoning at the current turn, which is closer to how
humans perform reasoning in a conversational setting, com-
pared to existing approaches. The prediction layer predicts
the answers based on the matching scores of the question
embedding and the context graph node embeddings per turn.

2. Graph-Flow Approach
2.1. Encoding Layer

We denote the context as C which is a sequence of words
tc1, c2, ..., cmu and the question at the i-th turn as Qi which
is a sequence of words tqpiq1 , q

piq
2 , ..., q

piq
n u. The details of

encoding the question and context are given next.

Pretrained word embeddings We use 300-dim GloVe
(Pennington et al., 2014) embeddings as well as 1024-dim
BERT (Devlin et al., 2018) embeddings to embed each word
in the context and the question. Following (Zhu et al., 2018),
we pre-compute BERT embeddings for each word using a
weighted sum of BERT layer outputs.

Aligned question embeddings Following (Lee et al., 2016)
and recent work, for each context word cj at the i-th turn, we
incorporate an aligned question embedding falignpc

piq
j q “

ř

k a
piq
j,kg

Qi

k where gQi

k is the GloVe embedding of question
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Figure 1. Overall architecture of the proposed model. Best viewed in color.

word qpiqk and apiqj,k is an attention score between context

word cj and question word qpiqk . Here we define the attention
score apiqj,k as,

a
piq
j,k 9 exppReLUpWgC

j q
T ReLUpWgQi

k qq (1)

where W P Rdˆd is a trainable model parameter, d is the
hidden state size, and gC

j is the GloVe embedding of context
word cj . To simplify notation, we denote the above attention
mechanism as AlignpA,B,Cq, meaning that an attention
matrix is computed between two sets of vectors A and B,
which is later used to get a linear combination of vector
set C. Hence we can reformulate the above alignment as
falignpC

piqq “ AlignpgC ,gQi ,gQiq.

Linguistic features Following previous works (Chen et al.,
2017; Huang et al., 2018; Zhu et al., 2018), for each con-
text word, we also encode linguistic features to a vector
flingpc

piq
j q concatenating 12-dim POS (part-of-speech) em-

bedding, 8-dim NER (named entity recognition) embedding
and a 3-dim exact matching vector indicating whether the
context word appears in Qi.

Conversation history Following (Choi et al., 2018), we
utilize conversation history by concatenating a feature vec-
tor fanspc

piq
j q encoding previous N answer locations to the

context word embeddings. In addition, we prepend previous
N question-answer pairs to the current question and con-
catenate a 3-dim turn marker embedding fturnpq

piq
k q to each

word vector in the augmented question to indicate which
turn it belongs to (e.g., i indicates the previous i-th turn).

In summary, at the i-th turn in a conversation, each context
word cj is encoded by a vector wpiqcj which is a concatenation
of gC

j , BERTC
j , falignpc

piq
j q, flingpc

piq
j q and fanspc

piq
j q. And

each question word qpiqk is encoded by a vector wQi

k which is
a concatenation of gQi

k , BERTQi

k and fturnpq
piq
k q. We denote

W
piq
C and WQi as a sequence of context word vectors wpiqcj

and question word vectors wQi

k , respectively at the i-th turn.

2.2. Reasoning Layer

2.2.1. QUESTION UNDERSTANDING

For each question Qi, we apply a BiLSTM (Hochreiter &
Schmidhuber, 1997) to the raw question embeddings WQi

to obtain contextualized embeddings Qi P Rdˆn.

Qi “ q
piq
1 , ...,qpiqn “ BiLSTMpWQiq (2)

Each question is then represented as a weighted sum of word
vectors in the question via a self-attention mechanism.

rqpiq “
ÿ

k

a
piq
k q

piq
k , where a

piq
k 9 exppwTq

piq
k q (3)

where w is a d-dim trainable weight.
Finally, we encode question history sequentially in turns
with a LSTM to generate history-aware question vectors.

p1, ...,pT “ LSTMprqp1q, ..., rqpT qq (4)

The output hidden states of the LSTM network p1, ...,pT

will be used for predicting answers.

2.2.2. GRAPH LEARNER

We now introduce how to dynamically build a weighted
graph to model semantic relationships among context words
at each turn in a conversation. To this end, we first apply
an attention mechanism to the context representations Wpiq

C

(which additionally incorporate both question information
and conversation history as described in Section 2.1) at the
i-th turn to compute an attention matrix A

piq
C , serving as a

weighted adjacency matrix for the context graph, defined as,

A
piq
C “ ReLUpUW

piq
C q

T ReLUpUW
piq
C q (5)
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where U is a dˆdc trainable weight and dc is the embedding
size of wpiqcj .

Considering that a fully connected context graph is not
only computationally expensive but also makes little sense
for reasoning, we proceed to extract a sparse graph from
A
piq
C via a KNN-style strategy where we only keep the K

nearest neighbors (including itself) for each context node
and apply a softmax function to these selected adjacency
matrix elements to get a sparse and normalized adjacency
matrix rA

piq
C .

rA
piq
C “ softmaxptopkpApiqC qq (6)

2.2.3. GRAPH-FLOW

Given the context graphs constructed by the Graph Learner,
we propose a novel Graph-Flow (GF) mechanism to sequen-
tially process a sequence of context graphs. Readers can
think that it is analogous to an RNN-style structure where
the main difference is that each element in a sequence is
not a data point, but instead a graph. As we advance in a
sequence of graphs, we process each graph using a GNN
and the output will be used when processing the next graph.

The details of the GF mechanism are as follows. At the
i-th turn, before we apply a GNN to the context graph Gi,
we initialize context node embeddings by fusing both the
original context information Cl´1

i and the updated context
information at the previous turn Cl

i´1 via a fusion function.

Cl
i “ GNNpsCl´1

i , rA
piq
C q

sCl´1
i,j “ FusepCl´1

i,j ,C
l
i´1,jq

(7)

where l is the GF layer index. Note that we can stack
multiple GF layers to enhance the performance if necessary.

As a result, the graph node embedding outputs of the rea-
soning process at the previous turn are used as a starting
state when reasoning at the current turn. Note that we set
sCl´1
0 “ Cl´1

0 as we will not incorporate any historical
information at the first turn.

We use Gated Graph Neural Networks (GGNN) (Li et al.,
2015) as our GNN module. When running GGNN, the
aggregated neighborhood information for each node is com-
puted as a weighted sum of its neighboring node embeddings
where the weights come from the normalized adjacency ma-
trix rA

piq
C . The fusion function is designed as a gated sum of

two information sources,

Fusepa,bq “ z ˚ a` p1´ zq ˚ b

z “ σpWzra;b;a ˚ b;a´ bs ` bzq
(8)

where σ is a sigmoid function and z is a gating vector.

To simplify notation, we denote the GF mechanism as
Cl “ Graph-FlowpCl´1, rACq which takes as input the old

graph node embeddings Cl´1 and the normalized adjacency
matrix rAC , and updates the graph node embeddings.

2.2.4. MULTI-LEVEL GRAPH REASONING

While a GNN is responsible for modeling the global inter-
actions among context words, modeling local interactions
among consecutive context words is also important for the
task. Therefore, before feeding the context word represen-
tations to a GNN, we first apply a BiLSTM to the context
words, that is, C0

i “ BiLSTMpWpiq
C q, and we then use the

output C0
i as the initial context node embedding. Inspired

by recent work (Wang et al., 2018) on modeling the context
with different levels of granularity, we choose to apply one
GF layer on low level representations of the context and an-
other GF layer on high level representations of the context,
as formulated in the following.

C1 “ Graph-FlowpC0, rACq

HQ
i “ rQi;g

Qi ;BERTQis

HC
i “ rC

1
i ;g

C ;BERTC
s

f2alignpC
piqq “ AlignpHC

i ,H
Q
i ,Qiqs

rC1
i “ BiLSTMprC1

i ; f
2
alignpC

piqqsq

C2 “ Graph-FlowprC1, rACq

(9)

2.3. Prediction Layer

Following (Huang et al., 2018; Zhu et al., 2018), we use the
same answer span selection method to predict the start and
end probabilities PS

i,j and PE
i,j of the j-th context word for

the i-th question. We additionally train a classifier to handle
unanswerable questions or questions whose answers are not
text spans in the context. A detail restatement of the answer
span selection method can be found in Appendix A.

3. Experiments
In this section, we conduct an extensive evaluation of our
proposed model against state-of-the-art conversational MRC
models. We use two popular benchmarks, described below.

3.1. Data and Metrics

The CoQA data contains 127k questions with answers, ob-
tained from 8k conversations. In CoQA, answers are in
free-form and hence are not necessarily text spans from
the context. The QuAC data contains 98k questions with
answers, obtained from 13k conversations. All the answers
in QuAC are text spans from the context.

The main evaluation metric is F1 score which is the har-
monic mean of precision and recall at word level between
the predicted answer and ground truth. In addition, for
QuAC the Human Equivalence Score (i.e., HEQ-Q and
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Table 1 Model and human performance (% in F1 score) on the CoQA test set.
Child. Liter. Mid-High. News Wiki Reddit Science Overall

PGNet (See et al., 2017) 49.0 43.3 47.5 47.5 45.1 38.6 38.1 44.1
DrQA (Chen et al., 2017) 46.7 53.9 54.1 57.8 59.4 45.0 51.0 52.6
DrQA+PGNet (Reddy et al., 2018) 64.2 63.7 67.1 68.3 71.4 57.8 63.1 65.1
BiDAF++ (Yatskar, 2018) 66.5 65.7 70.2 71.6 72.6 60.8 67.1 67.8
FLOWQA (Huang et al., 2018) 73.7 71.6 76.8 79.0 80.2 67.8 76.1 75.0
SDNet (Zhu et al., 2018) 75.4 73.9 77.1 80.3 83.1 69.8 76.8 76.6
GRAPHFLOW 77.1 75.6 77.5 79.1 82.5 70.8 78.4 77.3
Human (Reddy et al., 2018) 90.2 88.4 89.8 88.6 89.9 86.7 88.1 88.8

Table 2 Model and human performance (in %) on the QuAC
test set.

F1 HEQ-Q HEQ-D
BiDAF++ (Yatskar, 2018) 60.1 54.8 4.0
FLOWQA (Huang et al., 2018) 64.1 59.6 5.8
GRAPHFLOW 64.9 60.3 5.1
Human (Choi et al., 2018) 80.8 100 100

HEQ-D) is used to judge whether a system performs as well
as an average human. Please refer to (Reddy et al., 2018;
Choi et al., 2018) for details of these metrics.

3.2. Model Comparison

As shown in Table 1 and Table 2, our model consistently
outperforms these state-of-the-art baselines in terms of F1
score. In particular, GRAPHFLOW yields improvement over
all existing models on both datasets by at least +0.7% F1
on CoQA and +0.8% F1 on QuAC, respectively. Com-
pared with FLOWQA which is also based on the flow idea,
our model improves F1 by 2.3% on CoQA and 0.8% on
QuAC, which demonstrates the superiority of our GF mech-
anism over the Integration-Flow mechanism. Compared
with SDNet which relies on sophisticated inter-attention and
self-attention mechanisms, our model improves F1 by 0.7%
on CoQA (They did not report the results on QuAC.).

3.3. Ablation Study

Table 3 Ablation study: model performance (in %) on the
CoQA dev. set.

F1
GRAPHFLOW (2-His) 78.3

– PreQues 78.2
– PreAns 77.7
– PreAnsLoc 76.6
– BERT 70.2

– GF 68.8
– TempConn 69.9

GRAPHFLOW (1-His) 78.2
GRAPHFLOW (0-His) 76.7

We conduct an extensive ablation study to further investi-
gate the performance impact of different components in our

model as shown in Table 3. We find that the pretrained
BERT embedding (i.e., – BERT) has the most impact on
the performance, which again demonstrates the power of
large-scale pretrained language models. Our proposed GF
mechanism (i.e., – GF) also contributes significantly to the
model performance (i.e., improves F1 score by 1.4%). In
addition, within the GF layer, both the GNN part (i.e., 1.1%
F1) and the temporal connection part (i.e., 0.3% F1) con-
tribute to the results. We also notice that explicitly adding
conversation history to the current turn helps the model
performance by comparing GRAPHFLOW (2-His), GRAPH-
FLOW (1-His) and GRAPHFLOW (0-His). We can see that
the previous answer information (i.e., – PreAns) is more cru-
cial than the previous question information (i.e., – PreQues).
And among many ways to use the previous answer infor-
mation, directly marking previous answer locations (i.e., –
PreAnsLoc) seems to be the most effective. We conjecture
this is partially because the turn transitions in a conversa-
tion are usually smooth and marking the previous answer
locations helps the model better identify relevant context
chunks for the current question.

4. Conclusion
We proposed a novel GNNs-based model, namely GRAPH-
FLOW, for conversational MRC which carries over the rea-
soning output throughout a conversation. On two recently
released conversational MRC benchmarks, our proposed
model achieves superior results over previous approaches.

In the future, we would like to investigate more effective
ways of automatically learning graph structures from free
text and modeling temporal connections between sequential
graphs.
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A. Prediction Layer
Following (Huang et al., 2018; Zhu et al., 2018), we predict
answer spans by computing the start and end probabilities
PS
i,j and PE

i,j of the j-th context word for the i-th question,
formulated as,

PS
i,j 9 exppc2i,j

T
WSpiq

rpi “ GRUppi,
ÿ

j

PS
i,jc

2
i,jq

PE
i,j 9 exppc2i,j

T
WErpiq

(10)

where WS and WE are dˆ d trainable weights and GRU
is a Gated Recurrent Unit (Cho et al., 2014).

We additionally train a classifier to handle unanswerable
questions or questions whose answers are not text spans
in the context. We design different classifiers for the two
benchmarks CoQA and QuAC as CoQA contains questions
with abstractive answers but QuAC does not. For the CoQA
benchmark, we train a multi-class classifier which classi-
fies a question into one of the four categories including
“unknown”, “yes”, “no” and “other”. We do text span pre-
diction only if the question type is “other”. For the QuAC
benchmark, we train three separate classifiers to handle three
question classification tasks including a binary classification
task (i.e., “unknown”) and two multi-class classification
tasks (i.e., “yes/no” and “followup”). The classifier is de-
fined as,

rC2
i “ rfmeanpC

2
i q; fmaxpC

2
i qs

PC
i “ σpfcppiqrC2

i
T q

(11)

where fc is a linear layer for binary classification and a
dense layer for multi-class classification, which maps a d-
dim vector to a pnum class ˆ 2dq-dim vector. Further, σ
is a sigmoid function for binary classification and a soft-
max function for multi-class classification. We use rC2

i to
represent the whole context at the i-th turn which is a con-
catenation of average pooling and max pooling outputs of
C2

i .
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A.0.1. TRAINING

For training, the goal is to minimize the cross entropy loss
of both text span prediction (if the question requires it) and
question type prediction. The cross entropy of text span
prediction is defined as,

LS “ ´
ÿ

i

ISi plogpP
S
i,siq ` logpP

E
i,eiqq (12)

where ISi indicates whether this question requires text span
prediction, and si and ei are the ground-truth start and end
positions of the answer span for the i-th question.

As aforementioned, we train a single classifier for question
type prediction on CoQA and three separate classifiers for
question type prediction on QuAC. Therefore, the loss of
question type prediction is defined differently for the two
datasets as the following,

LCoQA
C “ ´

ÿ

i

logPC
i,ti (13)

where ti indicates the question type for the i-th question.

LQuAC
C “´

ÿ

i

!

tUi logPU
i ` p1´ t

U
i q logp1´ P

U
i q

` logPY
i,tYi

` logPF
i,tFi

)

(14)

where tUi , tYi and tFi indicate the ground-truth labels of the
“unknown”, “yes/no” and “followup” prediction tasks for
i-th question, and PU

i , PY
i and PF

i are the corresponding
probability predictions.

Thus, the training losses for CoQA and QuAC are LS `

LCoQA
C and LS ` LQuAC

C , respectively.

A.0.2. PREDICTION

During inference, for CoQA, we do text span prediction only
if span probability is the largest; otherwise, the answer is
“unknown”, “yes” or “no” depending on which one has the
largest probability. For QuAC, we do text span prediction
only if PU

i is no larger than a certain threshold1; otherwise,
the question is unanswerable.

B. Model Settings
We keep and fix the GloVe vectors for those words that
appear more than 5 times in the training set. The size of
all hidden layers is set to 300. When constructing context
graphs, the neighborhood size is set to 10. The number of
GNN hops is set to 5 for CoQA and 3 for QuAC. During
training, we apply dropout after the embedding layers (0.3

1We use 0.3 in our experiments as this maximizes the F1 score
on the development set.

for GloVe and 0.4 for BERT). A dropout rate of 0.3 is also
applied after the output of all RNN layers. We use Adamax
(Kingma & Ba, 2014) as the optimizer and the learning rate
is set to 0.001. We reduce the learning rate by a factor of
0.5 if the validation F1 score has stopped improving every
one epoch. We stop the training when no improvement is
seen for 10 consecutive epochs. We clip the gradient at
length 10. We batch over dialogs and the batch size is set
to 1. When augmenting the current turn with conversation
history, we only consider the previous two turns. When
doing text span prediction, the span is constrained to have
a maximum length of 12 for CoQA and 35 for QuAC. All
these hyper-parameters are tuned on the development set.

C. Effects of Parameter Tuning
We study the effects of various hyperparameter choices in
GRAPHFLOW regarding the GF component, such as the
number of GNN hops and the KNN neighborhood size. The
number of GNN hops controls how far node information
can be propagated in a graph. The KNN neighborhood size
controls the sparsity of the constructed graph. Fig. 2 and
Fig. 3 show the F1 score on the QuAC dev. set with various
values for the number of GNN hops and the KNN neighbor-
hood size, respectively. The default values for the number of
GNN hops and the KNN neighborhood size are 3 and 10, re-
spectively. As we can see, both of the two hyperparameters
have significant impacts on the model performance. When
reaching an optimal value, further increasing the number
of GNN hops or KNN neighborhood size does not help the
model performance.

Figure 2. Effect of number of GNN hops on the QuAC dev. set.

D. Interpretability Analysis
Here we visualize the memory bank (i.e., an m by d matrix)
which stores the hidden representations (and thus reasoning
output) of the context throughout a conversation. While
directly visualizing the hidden representations is difficult,
thanks to the flow-based mechanism introduced into our
model, we instead visualize the changes of hidden repre-
sentations of context words between consecutive turns. We



GRAPHFLOW: Exploiting Conversation Flow with Graph Neural Networks for Conversational Machine Comprehension

Figure 3. Effect of KNN neighborhood size on the QuAC dev. set.

expect that the most changing parts of the context should be
those which are relevant to the questions being asked and
therefore should probably be able to indicate shifts of the
focus in a conversation.

Following (Huang et al., 2018), we visualize this by com-
puting the cosine similarity of the hidden representations
of the same context words at consecutive turns, and then
highlight the words that have small cosine similarity scores
(i.e., change more significantly). Note that for better visual-
ization, we apply an attention threshold of 0.3 to highlight
only the dramatically changing context words. Fig. 4 high-
lights the most changing context words between consecutive
turns in a conversation from the CoQA dev. set. As we can
see, the hidden representations of context words which are
relevant to the consecutive questions are changing most
and thus highlighted most. We suspect this is in part be-
cause when the focus shifts, the model finds out the context
chunks relevant to the previous turn become less important
but those relevant to the current turn become more important.
Therefore, the memory updates in these regions are the most
active. Obviously, this makes the model easier to answer
follow-up questions. As we observe in our visualization
experiments, in conversations extensively involving coref-
erence or ellipsis, our model can still perform reasonably
well.
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Figure 4. The highlighted context indicates the QA model’s focus shifts between consecutive turns.


