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Abstract
Discrete data points are noncontinuous without structural information. In this paper, we propose a new fast outlier removal 
method via voxel-based surface propagation. The main technical components of our approach include (a) an efficient and 
simple spatial partitioning scheme and (b) a specially-designed surface propagation method. Numerical analyses indicate 
that our method is about 10 times faster than an existing method and significantly better than other two methods in terms of 
denoising accuracy. This provides an efficient solution to handling noisy laser-scanning data.

Keywords  Surface propagation · Laser scanning · Data outlier · Discrete data point

List of Symbols(
�1 ≥ �2 ≥ �3

)
	� Three eigenvalues

�max	� Maximum eigenvalue
�min	� Minimum eigenvalue
�	� Angle between two vectors
i, j, k	� The index in directions x, y, z, 

respectively
nx, ny, nz	� The number voxels in directions x, y, z, 

respectively
nv	� Total number of voxels in each problem(
�1, �2, �3

)
	� Three eigenvectors

Voxeli	� The set of data points in the current 
voxel, i, i = 1,nv

1  Introduction

Discrete data points are one common data type in engi-
neering and can be obtained via laser scanners and LIDAR 
(Light Detection and Ranging) sensors. Outlier removal is 
an important problem in different disciplines. Related tech-
niques have been widely used in a variety of fields: reverse 
engineering, rapid prototyping, biomedicine, architecture, 
entertainment industry, financial data analysis, etc.

Many studies have been conducted to remove outliers 
effectively and efficiently. However, most of these methods 
perform well only in specific situations. Some methods [1, 2] 
are more suited to handling isolated outliers, and others [3] are 
good in dealing with surfaces without sharp features. Xie et al. 
[2] used an active contour method to cluster mono-oriented 
groups for finding outlier clusters. This method is suited to 
highly-discrete outliers. Kolluri et al. [4] developed a density 
method and a plane fitting method for removing outliers. The 
implementations of these methods are quite simple.

Shen et al. [5] proposed a surface propagation method 
combined with minimal variance and normalized histogram. 
This method performs well in both non-isolated outlier clus-
ters and sharp edges. But, Shen’s method encounters an effi-
ciency issue when dealing with large data models. Wang and 
Feng [6] further advanced Shen’s method by introducing a 
new method: majority voting.

Zaman et al. [7] developed a density-based denoising 
algorithm, in which particle-swarm optimization is used 
for approximating optimal bandwidth of multivariate ker-
nel density and a mean-shift based clustering technique is 
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utilized to remove outliers. For a complete review in this 
field, see a recent review paper [8].

There are also some studies [9–14] related to feature 
extraction and reconstruction from 3D data based on the edge 
detection, segmentation, or shading information of unorgan-
ized point clouds. But, these methods are only remotely 
related to the study in this paper. It is difficult to make a com-
parison because of difference in research targets and meas-
urement environment. Other remotely related laser applica-
tions include distance and quality measurement [15–17].

According to our analysis [8], non-isolated outlier clus-
ters and sharp featured outlier clusters are two types of the 
most difficult outlier clusters. As for non-isolated outlier 
clusters, outlier clusters are so close to a main surface that 
distance-based criteria are not effective to remove outliers. 
With respect to sharp featured outlier clusters, it is difficult 
to preserve these sharp features in a data model because 
geometric non-smoothness at these features invalidates many 
analysis arsenals in calculus and differential geometry. In 
some cases such as laser scanning data, we might have to 
handle surfaces with sharp features and non-isolated outlier 
clusters. This becomes the most difficult type of models.

Existing methods for handling non-isolated outlier clus-
ters require a considerable amount of processing time and are 
therefore not suited to real-time or near real-time applications. 
The main objective of this paper is to propose a fast algorithm 
to remove different types of clusters (especially the most dif-
ficult types of outlier clusters) in an accurate and efficient way.

The rest of this paper is organized as follows. In Sect. 2, 
a new scheme for removing outlier clusters is presented. 
Experimental results and discussions are provided in Sect. 3, 
followed by some concluding remarks in Sect. 4.

2 � A Fast Scheme of Removing Outlier 
Clusters

2.1 � Principle of Locality

The domain of a point cloud model is subdivided into a lim-
ited number of voxels (volume elements) through a uniform 
partition in a 3D space. We use a voxel as the minimal unit 
of analysis and display. Specifically, all the numerical analy-
ses are aimed at each single voxel and all the data points in 
a voxel are treated simultaneously as an outlier or true data 
point. This reflects the Principle of Locality: data points in 
a small voxel are highly likely to have similar properties for 
the tasks of surface outlier removal.

Spatial partition is a geometric process that divides a 3D 
geometric domain into two or more disjoint sub-volumes 
while the union of these sub-volumes equals the domain. Var-
ious advanced data structures, such as binary space partition-
ing (BSP) trees [18], quadtrees/octrees [19], k-dimensional 

(k-d) trees [20] and R-trees [21], have been developed for 
efficient storage and query of data points. But, a significant 
number of accesses to the above data structures are needed in 
the context of denoising the non-isolated outlier clusters. In 
this paper, a uniform partition is used to reduce the computa-
tional time associated with the above data structures.

The uniform partition means that all the sub-volumes 
have the same sizes in three dimensions (x, y and z), respec-
tively. A bounding volume is first created to enclose the 
problem domain. Next, the bounding volume is uniformly 
subdivided into nx × ny × nz sub-volumes. Therefore, each 
sub-volume can be indexed by a triplet (i, j, k), where 
i ∈

[
0, nx

]
, j ∈

[
0, ny

]
, k ∈

[
0, nz

]
. One or more data points 

may be contained in a sub-volume, while some sub-volumes 
near the boundaries of the bounding volume may contain no 
point at all. The values of nx × ny × nz are problem depend-
ent. If the values are too big, the computational time of 
denoising will be long. On the other hand, if the values are 
too small, the denoising accuracy will be compromised.

Because of the uniform partition, the link between indices 
(i, j, k) of each sub-volume and the coordinates (x, y, z) of 
each data point becomes extremely easy to implement. One 
pass of preprocessing can be used to link each sub-volume to 
a list of data points. The locality of data points is realized at 
the level of sub-volumes. In such a way, subsequent queries 
of nearest neighbors become unnecessary, and therefore a 
considerable amount of computational time is saved.

2.2 � Fast Surface Propagation

The basic idea of surface propagation is to connect data 
points in different sub-volumes through geometric coherence. 
The propagation is based on voxel and starts from an initial 
voxel. Then, it searches the neighboring ring of the current 
voxel, select the voxels that are considered to be inside the 
main surface, and mark points in those voxels as true data 
according to driving force for propagation. Herein, the driv-
ing force is defined as a mechanism to guide the surface 
propagation. Other voxels in the ring are temporarily marked 
as outliers. For each voxel that is inside the main surface, 
the program continues to search its neighboring voxels. The 
propagation terminates when there is no new voxel to visit. 
After the propagation, the program treats each data point in 
the voxels, which are marked as outliers or untouched (initial 
status), as outlier; each data point in the voxels, which are 
marked as true data, is considered as a true data point.

Because some voxels may be visited several times, a 
principle to label voxels is needed in the propagation. In 
this paper, we finally mark the voxel as true data as long as 
it has been treated as true data once. But, with respect to 
those voxels that are treated as true data after being treated 
as outliers, they are not included into the next iteration of 
propagation.
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2.2.1 � Driving Force of Propagation

Driving force is crucial for a surface propagation. It is used 
to determine whether a voxel should be included into the 
main surface. The key criteria to select the driving force for 
the surface propagation include

(a)	 The driving force should be direct/indirect measure-
ments or certain statistical properties,

(b)	 The driving force should imply the levels of closeness 
between voxels,

(c)	 The driving force should reflect the difference between 
true data and outliers.

We define two kinds of driving forces in our method: dis-
tance and angle. As for distance, it refers to the Euclidean 
distance between the centroid of data points in a neighboring 
voxel and the plane determined by the two largest eigenvec-
tors of the current voxel, as shown in Fig. 1a. In this figure, 
point A represents the centroid of all data points in the current 
voxel, while points B and C are the centroids of data points in 
two adjacent voxels, respectively. The tangential plane passes 
through point A and is determined by a principal component 
analysis [22] of all the data points in the current voxel. The 
covariance matrix of all data points in the current voxel is

where Voxeli is the set of data points in the current voxel, i, 
and �i is the centroid of data points in Voxeli. ⊗ is an outer 
product operator of vectors. A Jacobi transformation [23] is 
used to determine eigenvectors 

(
v1, v2, v3

)
 and eigenvalues (

�1 ≥ �2 ≥ �3

)
 of the CV. �3 represents the normal direc-

tion of the tangent plane, �1 and �2 are the base vectors of 
orthogonal parameter coordinates in the tangent plane.

It is a priori assumption that a smaller distance to the 
tangential plane means a larger probability and this prob-
ability defines a chance with which the neighboring voxel is 
inside the main surface. In other words, outliers have larger 
distances than true data points.

With respect to angle, it represents an angle between two 
planes and this angle is formed between the smallest eigen-
vectors (i.e., the vectors of surface normal) of the current and 
neighboring voxels, respectively. In Fig. 1b, �3i and �3j are the 
surface normal vectors of the tangential planes that pass point 
A and B, respectively. These two points are the centroids of 
data points in Voxeli and Voxelj . The angle � between these two 
vectors is computed by the dot product of the vectors:

(1)CV =
∑

q∈Voxeli

(
q − ci

)
⊗

(
q − ci

)
,

(2)� = arccos

⎛⎜⎜⎝
v3i ⋅ v3j

��v3i�����v3j
���

⎞⎟⎟⎠
,

Note that each single driving force mentioned above is not 
effective enough to handle all cases. For example, in a sce-
nario of removing non-isolated surface outliers, which is 
regarded as the most difficult case, outliers are often quite 
close to the main surface. Thus, the distance approach is 
likely to fail. In some other scenarios, the angle approach is 
not effective enough to differentiate true data from outliers. 
A comprehensive way is to combine these two criteria so 
that we can handle different cases.

2.2.2 � Initial Voxel

The initial voxel is another crucial factor for surface prop-
agation. If an incorrect initial voxel is selected, the propa-
gation cannot help us remove outliers. One key principle 
to select the initial voxel of surface propagation is to find 
the voxel that is most likely to be inside the main surface. 
In this paper, we utilize a histogram of the smallest eigen-
value �3 of voxels to find the initial voxel, as shown in 
Fig. 2. In the figure, the horizontal axis represents the bins 
of the smallest eigenvalues, while the vertical axis refers 
to the count of voxels in each bin. The number of bins, m, 

Fig. 1   Two driving forces for surface propagation
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is a finite integer between 20 and 40. The bin number, ni , 
is computed by

where ceil() represents a ceiling function to convert a real 
number to an integer. �max = max

(
�3i|i ∈

[
1, nv

])
 and 

�min = min(�3i|i ∈
[
1, nv

]
) , where nv is the total number of 

voxels in each problem. �3i refers to the third eigenvalue of 
the i-th voxel.

An initial voxel should be selected from the leftmost bin 
where the values of �3 are among the lowest.

2.2.3 � Algorithm

A general flowchart of our fast voxel-based propagation 
(FVBSP) for outlier removal is illustrated in Fig. 3. It con-
sists of three main technical components: connectivity, 
eigenvalue, and core propagation. The detailed algorithm 
of FVBSP is provided in Fig. 4, while two important rou-
tines are outlined in Figs. 5 and 6. The eigenvalues of a 
covariance matrix are computed on the basis of codes in [6].

In Fig. 3, the first component refers to the connectivity 
between adjacent voxels in a problem domain. With respect 
to the current voxel, there are six face-connected neighbor-
ing voxels and 12 edge-connected adjacent voxels. A surface 
propagation traverses in the space starting from the initial 
voxel and traveling to the neighboring voxels. The propaga-
tion terminates when non-visited voxels are exhausted.

(3)ni = ceil

(
m
(
�max − �3i

)
(
�max − �min

)
)
,

The second component in Fig. 3 is used to compute the 
eigenvalues and eigenvectors of each voxel. The eigenval-
ues are used to construct a histogram of the third eigenvalue, 
from which an initial voxel for the surface propagation can 
be selected. The eigenvectors are used to calculate the angle-
based driving force in Eq. (3) for the propagation.

The third component is the surface propagation, which is 
used for labelling all the voxels as well as all the data points 
within each voxel. Depending upon the surface properties in 
the problem domain, if geometric discontinuity exists, several 
passes of propagation may be needed to process all the voxels 

Fig. 2   A histogram of the smallest eigenvalue of voxels

Fig. 3   A general flowchart of our fast voxel-based propagation for 
outlier removal

Fig. 4   Algorithm of fast voxel-based surface propagation

Fig. 5   Routine of GetInitialVoxel Input
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in the problem. In such cases, a different initial voxel is selected 
for each pass based on the histogram information and the status 
of those voxels that have not been visited yet. Starting from the 
initial voxel, the surface propagation progresses like a wave 
front. All the voxels located at this wave front are stored in 
a dynamic array or a linked list. The propagation terminates 
when this wave front becomes empty. At the beginning, the 
wave front contains only one element, i.e., the initial voxel.

Figure 5 shows the implementation for selecting an initial 
voxel. Function GetConnectivityFlag(voxel) is used to handle 
the cases where geometric discontinuity exists in a problem 
domain. By using the connectivity flag, our approach is capa-
ble of processing several disjoint geometric objects one at a 
time. Function Bin(error) converts an eigenvalue to an integer: 
bin number for the histogram.

The detailed implementation of driving forces for surface 
propagation is described in Fig. 6. The overall driving force 
is computed by

where s ∈ [0, 1] is a weighting factor for the linear combi-
nation of distance and angle. Normalized() is a function to 
normalize the angle or distance. If the driving force in Eq. 
(4) is less than a threshold, the surface propagation moves 
from the current voxel to the neighboring voxel.

The initial voxel is another crucial factor for the surface 
propagation. Its selection is given in Sect. 2.2.2.

3 � Numerical Tests and Discussions

Numerical tests were conducted with discrete data points 
from a laser scanner. The algorithms designed in this 
paper were implemented in Visual Studio and tested on an 
Asus G752VT laptop with 2.6 GHz Intel CPUs (4 cores 

(4)
driving force =s Normalized(distance)

+ (1 − s)Normalized(angle),

Fig. 6   Routine for computing the driving force

Table 1   Parameter setting of Eigenvalue method

Method\param-
eters

n (# of voxels in 
each dimension)

HISTOGNUM 
(# of bins)

Threshold of 
Histogram

Eigen value 
method

100 (70 for data 
model 2)

30 15

Table 2   Parameter setting of Density method

Method\param-
eters

n (# of voxels in 
each dimension)

HISTOGNUM 
(# of bins)

Threshold of 
Histogram

Density value 
method

100 (70 for data 
model 2)

30 15

Table 3   Parameter setting of Distance method

Method\param-
eters

n (# of voxels in 
each dimension)

HISTOGNUM 
(# of bins)

Threshold of 
Histogram

Distance value 
method

100 (70 for data 
model 2)

30 15

Table 4   Parameter setting of connectivity method

Method\parameters Connectivity method

n (# of voxels in each dimension) 100 (70 for data model 2)
HISTOGNUM (# of bins) 30
Threshold of Histogram 15
Count Threshold of Connectivity 2

Table 5   Parameter setting of VBFSP method

Method\parameters Connectivity method

n (# of voxels in each dimension) 100 (70 for data model 2)
HISTOGNUM (# of bins) 30
Threshold of Histogram 15
Count Threshold of Connectivity 2
Weighting factor s in Eq. (4) 0.6 (0.68 for data model 2)
Driving Force Threshold 0.6 (0.355 for data model 2)

Table 6   Parameter setting of Shen’s method

Method\parameters Shen’s method [5]

n (# of voxels in each dimension) 100 (70 for data model 2)
HISTOGNUM (# of bins) 30
Threshold of Histogram 15
Count Threshold of Connectivity 2
Weighting factor s in Eq. (4) 0.6 (0.68 for data model 2)
Driving Force Threshold 0.6 (0.355 for data model 2)
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and 8 Logical Processors), 32 GB Internal storage, and an 
NVIDIA Geforce GTX 970 M. To provide a fair basis for 
comparing all the tested algorithms, no parallel computing 
techniques were exploited.

We compared a density method, a distance method, an 
eigenvalue method, a connectivity method, Shen’s surface 
propagation method [5] and our FVBSP method on various 
data models. The density method is based on the density 
of point clouds and the distance method is computed via 
the distance to tangential planes. The eigenvalue method 
is an approach for the classification of data points based on 
only the eigenvalue information of data points via a principal 
component analysis over a local neighborhood. The connec-
tivity method is another approach, which relies upon only 
the voxel connectivity information to filter out isolated outli-
ers. Shen’s method is a sophisticated approach that utilizes a 
kd-tree and surface propagation with respect to data points.

Denoising accuracy is quantified by the following metric:

where Ed stands for denoising error. nnegative refers to the 
number of outliers that are considered to true data points, 
and npositive denotes the number of true data points that are 
marked as outliers. n is the total number of points in a noisy 
data model. A smaller Ed means a better denoising accuracy. 
The purpose of log() function in Eq. (4) is to handle the pos-
sibility of a very small fraction of npositive+nnegative

n
 , while log

(
1

n

)
 

is used to make Ed become zero when npositive + nnegative = 0 . 
In this paper, the ground truth of each data model was manu-
ally annotated.

The setting of parameters varies on different models, as 
shown in Tables 1, 2, 3, 4, 5 and 6. We adjusted the setting 
based on the performance of each model. Note that among 
all the parameters, nx × ny × nz influences both efficiency 
and performance of the algorithms, while the rest of param-
eters have an impact only on performances.

Figure 7 is a special case in which there are some clus-
tered noise data inside a space bounded by a concave sur-
face. The outlier clusters are so close to the main surface that 
many existing methods (e.g., eigenvalue method and connec-
tivity method) fail to remove outliers, as shown in Fig. 7a, b. 
Shen’s method and our VBFSP method perform well in this 
case since they have a stronger capability of handling non-
isolated outlier clusters as we mentioned in Sect. 1.

Figure 8 is another typical case where non-isolated out-
lier clusters exist around a sharp corner. This case is more 

(4)Ed = log

(
max

(
npositive + nnegative, 1

)
n

)
− log

(
1

n

)
,

Fig. 7   Data model 1 processed by eigenvalue method, density 
method, distance method, connectivity method, Shen’s method and 
our FVBSP method

▸
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difficult than data model 1 since it contains non-isolated out-
lier clusters and sharp featured surface. Shen’s method and 
our FVBSP method perform much better than the eigenvalue 
method, density method, distance method, and connectivity 
method.

It is clearly shown in Figs. 7 and 8 that the performance 
of our VBFSP method is very close to that of Shen’s method. 
But, the FVBSP method is much more efficient than Shen’s 
method, as illustrated in Tables 7, 8 and 9. Since our propa-
gation is voxel-based, its computational efficiency is close to 
the eigenvalue method, density method, distance method and 
connectivity method. Shen’s method is based on a kd-tree 
that is much more time-consuming in accessing the nearest 
neighbors.   

Fig. 8   Data model 2 processed 
by eigenvalue method, density 
method, distance method, 
connectivity method, Shen’s 
method and our FVBSP method

Table 7   Execution time and removed outlier count of data model 1 
(194,102 points)

Method Number of 
reserved 
points

Number of 
removed 
outliers

Denois-
ing error 
E
d

Execution 
time (s)

Eigenvalue 183,636 10,476 9.14 7.08
Distance 189,099 5003 8.26 7.99
Density 167,883 26,219 10.13 6.82
Connectivity 163,507 30,595 10.24 7.16
Shen’s method 185,633 8469 5.89 39.0
FVBSP 187,809 6293 6.49 7.26

Table 8   Execution time and removed outlier count of data model 2 
(90,528 points)

Method Number of 
reserved 
points

Number of 
removed 
outliers

Denois-
ing error 
E
d

Execution 
time (s)

Eigenvalue 89,911 617 8.04 3.46
Distance 87,923 2605 7.70 3.83
Density 71,975 18,553 9.81 3.37
Connectivity 89,642 886 9.44 3.44
Shen’s method 88,860 1668 9.10 24.0
FVBSP 86,176 4352 6.00 3.49

Table 9   Execution time and removed outlier count of data model 3 
(1,919,242 points)

Method Number of 
reserved 
points

Number of 
removed 
outliers

Denois-
ing error 
E
d

Execution 
time (s)

Eigenvalue 1,910,830 8412 10.7 65.56
Distance 1,914,329 4913 10.6 68.89
Density 1,790,391 128,913 12.0 64.66
Connectivity 1,855,569 63,673 11.41 65.03
Shen’s method 1,904,924 14,318 4.42 137.0
FVBSP 1,901,615 17,627 10.8 67.04
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Figure 9 is the results of removing outliers of a large data 
model (Fig. 10c). Shen’s method produces the best denoising 
accuracy, while FVBSP is in a close range with the eigen-
value and distance methods. The execution time of Shen’s 
method is much greater than the other methods.

The time complexity of FVBSP is O(n), where n is the 
total number of data points. The real measurement of com-
putational time over the three data models is in good agree-
ment with this claim, as shown in Fig. 11. For clarity, we use 
a log–log relationship. The slope in Fig. 11 is approximately 
equal to 1.0, which indicates a linear relationship between 
the size of data models and the execution time of FVBSP. 
The memory complexity of FVBSP is O(n + m3 ), where n 
reflects several arrays with the dimension length being the 
total number of data points and m refers to the number of 
voxels in each dimension.

Compared with Shen’s surface propagation method [5], 
some unique features of our FVBSP method include

(a)	 The FVBSP method is based on voxels instead of a 
kd-tree. This makes it less computationally expensive 
than Shen’s method.

(b)	 The FVBSP method combines not only the distance 
factor but also the angle factor, which makes it well-
suited to different types of outlier clusters.

(c)	 The FVBSP method starts from one initial voxel and 
runs one round of propagation while Shen’s surface 
propagation method starts from a number of initial 
points and runs several rounds of propagation. The 
experiment results show that as long as the driving 
force for surface propagation is effective and the initial 
voxel is good, one round of propagation is sufficient for 
small- or medium-sized models.

In summary, the FVBSP method simplifies the complex-
ity of surface propagation while keeping a high performance 
of removing outliers that are difficult to deal with. It is par-
ticularly useful in handling small- and medium-sized data 
models. The advantage of FVBSP for large data models is 
not obvious at present. This demands future work for further 
improvement.

With the fast advances in autonomous vehicles in recent 
years, fast processing of a large amount of discrete data 
points from LIDAR (Light Detection And Ranging [24]) 
sensors becomes an emerging issue to investigate. Our 
FVBSP method will shed light on the real-time processing 
of LIDAR data points for autonomous vehicles.

Fig. 9   Data model 3 processed by eigenvalue method, density 
method, distance method, connectivity method, Shen’s method and 
our FVBSP method

▸
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4 � Conclusions

In this paper, our algorithm is compared favorably to the 
existing methods because it can remove outliers even in the 
most difficult cases and it is more computationally efficient 
than Shen’s method that can also remove difficult outliers. 

The unique contribution of this paper is to propose a voxel-
based surface propagation approach with a linear combina-
tion of distance and angle as the driving force of propaga-
tion that can deal with complex types of outlier clusters. 
Numerical testing indicates that our method is well suited 
to small- and medium-sized data models.
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