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Abstract

In this paper, we propose an end-to-end graph learning framework, namely Iterative
Deep Graph Learning (IDGL), for jointly and iteratively learning graph structure
and graph embedding. The key rationale of IDGL is to learn a better graph structure
based on better node embeddings, and vice versa (i.e., better node embeddings
based on a better graph structure). Our iterative method dynamically stops when
the learned graph structure approaches close enough to the graph optimized for
the downstream prediction task. In addition, we cast the graph learning problem
as a similarity metric learning problem and leverage adaptive graph regularization
for controlling the quality of the learned graph. Finally, combining the anchor-
based approximation technique, we further propose a scalable version of IDGL,
namely IDGL-ANCH, which significantly reduces the time and space complexity of
IDGL without compromising the performance. Our extensive experiments on nine
benchmarks show that our proposed IDGL models can consistently outperform
or match the state-of-the-art baselines. Furthermore, IDGL can be more robust to
adversarial graphs and cope with both transductive and inductive learning.

1 Introduction

Recent years have seen a significantly growing amount of interest in graph neural networks (GNNs),
especially on efforts devoted to developing more effective GNNs for node classification [29, 36, 17,
52], graph classification [60, 43] and graph generation [47, 37, 61]. Despite GNNs’ powerful ability
in learning expressive node embeddings, unfortunately, they can only be used when graph-structured
data is available. Many real-world applications naturally admit network-structured data (e.g., social
networks). However, these intrinsic graph-structures are not always optimal for the downstream tasks.
This is partially because the raw graphs were constructed from the original feature space, which may
not reflect the “true" graph topology after feature extraction and transformation. Another potential
reason is that real-world graphs are often noisy or even incomplete due to the inevitably error-prone
data measurement or collection. Furthermore, many applications such as those in natural language
processing [7, 57, 58] may only have sequential data or even just the original feature matrix, requiring
additional graph construction from the original data matrix.

To address these limitations, we propose an end-to-end graph learning framework, namely Iterative
Deep Graph Learning (IDGL), for jointly and iteratively learning the graph structure and the GNN
parameters that are optimized toward the downstream prediction task. The key rationale of our IDGL
˚Corresponding author.
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Figure 1: Overall architecture of the proposed IDGL framework. Dashed lines (in data points on left)
indicate the initial noisy graph topology Ap0q (if not available we use a kNN graph).

framework is to learn a better graph structure based on better node embeddings, and at the same time,
to learn better node embeddings based on a better graph structure. In particular, IDGL is a novel
iterative method that aims to search for an implicit graph structure that augments the initial graph
structure (if not available we use a kNN graph) with the goal of optimizing the graph for downstream
prediction tasks. The iterative method adjusts when to stop in each mini-batch when the learned
graph structure approaches close enough to the graph optimized for the downstream task.

Furthermore, we present a graph learning neural network that uses multi-head self-attention with
epsilon-neighborhood sparsification for constructing a graph. Moreover, unlike the work in [25] that
directly optimizes an adjacency matrix without considering the downstream task, we learn a graph
metric learning function by optimizing a joint loss combining both task-specific prediction loss and
graph regularization loss. Finally, we further propose a scalable version of our IDGL framework,
namely IDGL-ANCH, by combining the anchor-based approximation technique, which reduces the
time and memory complexity from quadratic to linear with respect to the numbers of graph nodes.

In short, we summarize the main contributions as follows:

• We propose a novel end-to-end graph learning framework (IDGL) for jointly and iteratively
learning the graph structure and graph embedding. IDGL dynamically stops when the
learned graph structure approaches the optimized graph (for prediction). To the best of our
knowledge, we are the first to introduce iterative learning for graph structure learning.

• Combining the anchor-based approximation technique, we further propose a scalable version
of IDGL, namely IDGL-ANCH, which achieves linear complexity in both computational
time and memory consumption with respect to the number of graph nodes.

• Experimental results show that our models consistently outperform or match the state-of-
the-art baselines on various downstream tasks. More importantly, IDGL can be more robust
to adversarial graph examples and can cope with both transductive and inductive learning.

2 Iterative Deep Graph Learning Framework

2.1 Problem Formulation

Let the graph G “ pV, Eq be represented as a set of n nodes vi P V with an initial node feature matrix
X P Rdˆn, edges pvi, vjq P E (binary or weighted) formulating an initial noisy adjacency matrix
Ap0q P Rnˆn, and a degree matrix D

p0q
ii “

ř

j A
p0q
ij . Given a noisy graph input G :“ tAp0q,Xu

or only a feature matrix X P Rdˆn, the deep graph learning problem we consider in this paper is
to produce an optimized graph G˚ :“ tAp˚q,Xu and its corresponding graph node embeddings
Z “ fpG˚, θq P Rhˆn, with respect to some (semi-)supervised downstream task. It is worth noting
that we assume that the graph noise is only from graph topology (the adjacency matrix) and the node
feature matrix X is noiseless. The more challenging scenario where both graph topology and node
feature matrix are noisy, is part of our future work. Without losing the generality, in this paper, we
consider both node-level and graph-level prediction tasks.

2.2 Graph Learning and Graph Embedding: A Unified Perspective

Graph topology is crucial for a GNN to learn expressive graph node embeddings. Most of existing
GNN methods simply assume that the input graph topology is perfect, which is not necessarily true
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in practice since real-world graphs are often noisy or incomplete. More importantly, the provided
input graph(s) may not be ideal for the supervised downstream tasks since most of raw graphs are
constructed from the original feature space which may fail to reflect the “true” graph topology after
high-level feature transformations. Some previous works [52] mitigate this issue by reweighting
the importance of neighborhood node embeddings using self-attention on previously learned node
embeddings, which still assumes that the original graph connectivity information is noiseless.

Figure 2: A sketch of the proposed
IDGL framework.

To handle potentially noisy input graph, we propose our novel
IDGL framework that formulates the problem as an itera-
tive learning problem which jointly learns the graph structure
and the GNN parameters. The key rationale of our IDGL
framework is to learn a better graph structure based on better
node embeddings, and in the meanwhile, to learn better node
embeddings based on a better graph structure, as shown in
Fig. 2. Unlike most existing methods that construct graphs
based on raw node features, the node embeddings learned by
GNNs (optimized toward the downstream task) could provide
useful information for learning better graph structures. On
the other hand, the newly learned graph structures could be a
better graph input for GNNs to learn better node embeddings.

In particular, IDGL is a novel iterative method that aims to
search for an implicit graph structure that augments the initial graph structure (if not available we
use a kNN graph) for downstream prediction tasks. The iterative method dynamically stops in each
mini-batch when the learned graph structure approaches close enough to the optimized graph (with
respect to the downstream task) based on our proposed stopping criterion. Moreover, the process of
graph construction can be optimized toward the downstream task in an end-to-end manner.

2.3 Graph Learning as Similarity Metric Learning

Previous methods (e.g., [15]) that model the graph learning problem as learning a joint discrete
probability distribution on the edges of the graph have shown promising performance. However,
since they optimize the edge connectivities by assuming that the graph nodes are known, they are
unable to cope with the inductive setting (with new nodes during testing). To overcome this issue, we
cast the graph structure learning problem as similarity metric learning, which will be jointly trained
with the prediction model dedicated to a downstream task.

Graph similarity metric learning. Common options for metric learning include cosine similar-
ity [44, 54], radial basis function (RBF) kernel [59, 34] and attention mechanisms [51, 23]. A good
similarity metric function is supposed to be learnable and expressively powerful. Although our
framework is agnostic to various similarity metric functions, without loss of generality, we design a
weighted cosine similarity as our metric function, sij “ cospw d vi,w d vjq, where d denotes the
Hadamard product, and w is a learnable weight vector which has the same dimension as the input
vectors vi and vj , and learns to highlight different dimensions of the vectors. Note that the two input
vectors could be either raw node features or computed node embeddings.

To stabilize the learning process and increase the expressive power, we extend our similarity metric
function to a multi-head version (similar to the observations in [51, 52]). Specifically, we use m
weight vectors (each one representing one perspective) to compute m independent similarity matrices
using the above similarity function and take their average as the final similarity:

spij “ cospwp d vi,wp d vjq, sij “
1

m

m
ÿ

p“1

spij (1)

Intuitively, spij computes the cosine similarity between the two input vectors vi and vj , for the p-th
perspective, where each perspective considers one part of the semantics captured in the vectors.

Graph sparsification via ε-neighborhood. Typically an adjacency matrix (computed from a metric)
is supposed to be non-negative but sij ranges between r´1, 1s. In addition, many underlying graph
structures are much more sparse than a fully connected graph which is not only computationally
expensive but also might introduce noise (i.e., unimportant edges). We hence proceed to extract a
symmetric sparse non-negative adjacency matrix A from S by considering only the ε-neighborhood
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for each node. Specifically, we mask off (i.e., set to zero) those elements in S which are smaller than
a non-negative threshold ε.

Anchor-based scalable metric learning. The above similarity metric function like Eq. (1) computes
similarity scores for all pairs of graph nodes, which requiresOpn2q complexity for both computational
time and memory consumption, rendering significant scalablity issue for large graphs. To address the
scalability issue, inspired by previous anchor-based methods [41, 55], we design an anchor-based
scalable metric learning technique which learns a node-anchor affinity matrix R P Rnˆs (i.e., requires
Opnsq for both time and space complexity where s is the number of anchors) between the node set V
and the anchor set U . Note that s is a hyperparameter which is tuned on the development set.

Specifically, we randomly sample a set of s P U anchors from the node set V , where s is usually
much smaller than n in large graphs. The anchor embeddings are thus set to the corresponding node
embeddings. Therefore, Eq. (1) can be rewritten as the following:

apik “ cospwp d vi,wp d ukq, aik “
1

m

m
ÿ

p“1

apik (2)

where aik is the affinity score between node vi and anchor uk. Similarly, we apply the ε-neighborhood
sparsification technique to the node-anchor affinity scores aik to obtain a sparse and non-negative
node-anchor affinity matrix R.

2.4 Graph Node Embeddings and Prediction

Although the initial graph could be noisy, it typically still carries rich and useful information regarding
true graph topology. Ideally, the learned graph structure A could be supplementary to the original
graph topology Ap0q to formulate an optimized graph for GNNs with respect to the downstream task.
Therefore, with the mild assumption that the optimized graph structure is potentially a “shift” from
the initial graph structure, we combine the learned graph with the initial graph,

rAptq “ λLp0q ` p1´ λq
!

η fpAptqq ` p1´ ηq fpAp1qq

)

(3)

where Lp0q “ Dp0q´1{2
Ap0qDp0q´1{2

is the normalized adjacency matrix of the initial graph. Aptq

and Ap1q are the two adjacency matrices computed at the t-th and 1-st iterations (using Eq. (1)),
respectively. The adjacency matrix is further row normalized, namely, fpAqij “ Aij{

ř

j Aij .

Note that Ap1q is computed from the raw node features X, whereas Aptq is computed from the
previously updated node embeddings Zpt´1q that is optimized toward the downstream prediction
task. Therefore, we make the final learned graph structure as their linear combination weighted by
a hyperparameter η, so as to combine the advantages of both. Finally, another hyperparameter λ is
used to balance the trade-off between the learned graph structure and the initial graph structure. If
such an initial graph structure is not available, we instead use a kNN graph constructed based on raw
node features X using cosine similarity.

Our graph learning framework is agnostic to various GNN architectures (that take as input a node
feature matrix and an adjacency matrix to compute node embeddings) and prediction tasks. In this
paper, we adopt a two-layered GCN [29] where the first layer (denoted as GNN1) maps the raw node
features X to the intermediate embedding space, and the second layer (denoted as GNN2) further
maps the intermediate node embeddings Z to the output space.

Z “ ReLUpMPpX, rAqW1q, py “ σpMPpZ, rAqW2q, Lpred “ `ppy,yq (4)

where σp¨q and `p¨q are task-dependent output function and loss function, respectively. For instance,
for a classification task, σp¨q is a softmax function for predicting a probability distribution over a
set of classes, and `p¨q is a cross-entropy function for computing the prediction loss. MPp¨, ¨q is a
message passing function, and in GCN, MPpF, rAq “ rAF for a feature/embedding matrix F and
normalized adjacency matrix rA which we obtain using Eq. (3).

Node-anchor message passing. Note that a node-anchor affinity matrix R serves as a weighted
adjacency matrix of a bipartite graph B allowing only direct connections between nodes and anchors.
If we regard a direct travel between a node and an anchor as one-step transition described by R, built
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upon theories of stationary Markov random walks [42], we can actually recover both the node graph
G and the anchor graph Q from R by computing the two-step transition probabilities. Let A P Rnˆn

denote a row-normalized adjacency matrix for the node graph G, and Aij “ pp2qpvj |viq indicate the
two-step transition probability from node vi to node vj , A can be recovered from R,

A “ ∆´1RΛ´1RJ (5)

where Λ P Rsˆs (Λkk “
řn

i“1Rik) and ∆ P Rnˆn (∆ii “
řs

k“1Rik) are both diagonal matrices.
Similarly, we can recover the row-normalized adjacency matrix B P Rsˆs for the anchor graph Q,

B “ Λ´1RJ∆´1R (6)

A detailed proof of recovering node and anchor graphs from the affinity matrix is provided in Ap-
pendix A.1. While explicitly computing a node adjacency matrix A from R (Eq. (5)) and directly
performing message passing over the node graph G (Eq. (4)) are expensive in both time complexity
(Opn2sq) and space complexity (Opn2q), one can instead equivalently decompose the above process
(denoted as MP12) into two steps: i) node-to-anchor message passing MP1 and ii) anchor-to-node
message passing MP2, over the node-anchor bipartite graph B, formulated as follows,

MP12pF,Rq “ MP2pF
1,Rq, F1 “ MP1pF,Rq (7)

where MP1pF,Rq “ Λ´1RJF aims to pass message F from the nodes V to the anchors U , and
MP2pF

1,Rq “ ∆´1RF1 aims to further pass the message F1 aggregated on the anchors back to
the nodes. Finally, we can obtain MP12pF,Rq “ ∆´1RΛ´1RJF “ AF where A is the node
adjacency matrix recovered from R using Eq. (5). In this way, we reduce both time and space
complexity toOpnsq. Therefore, we can rewrite the regular node embedding and prediction equations
defined in Eqs. (3) and (4) as follows,

Z “ ReLUpMPapX, tL
p0q,Rptq,Rp1quqW1q, py “ σpMPapZ, tL

p0q,Rptq,Rp1quqW2q (8)

where MPap¨, ¨q is a hybrid message passing function with the same spirit of Eq. (3), defined as,

MPapF, tL
p0q,Rptq,Rp1q

uq “ λMPpF,Lp0qq ` p1´ λq
!

ηMP12pF,R
ptq
q ` p1´ ηqMP12pF,R

p1q
q

)

(9)

Note that we use the same MPp¨, ¨q function defined in Eq. (4) for performing message passing over
Lp0q which is typically sparse in practice, and F can either be X or Z.

2.5 Graph Regularization

Although combining the learned graph Aptq with the initial graph Ap0q is an effective way to approach
the optimaized graph, the quality of the learned graph Aptq plays an important role in improving the
quality of the final graph rAptq. In practice, it is important to control the smoothness, connectivity and
sparsity of the resulting learned graph Aptq, which faithfully reflects the graph topology with respect
to the initial node attributes X and the downstream task.

Let each column of the feature matrix X be considered as a graph signal. A widely adopted
assumption for graph signals is that values change smoothly across adjacent nodes. Given an
undirected graph with a symmetric weighted adjacency matrix A, the smoothness of a set of n graph
signals x1, . . . ,xn P Rd is usually measured by the Dirichlet energy [2],

ΩpA,Xq “
1

2n2

ÿ

i,j

Aij ||xi ´ xj ||
2 “

1

n2
trpXTLXq (10)

where trp¨q denotes the trace of a matrix, L “ D´A is the graph Laplacian, and D “
ř

j Aij is the
degree matrix. As can be seen, minimizing ΩpA,Xq forces adjacent nodes to have similar features,
thus enforcing smoothness of the graph signals on the graph associated with A.

However, solely minimizing the smoothness loss will result in the trivial solution A “ 0. Also, it is
desirable to have control of how sparse the resulting graph is. Following [25], we impose additional
constraints on the learned graph,

fpAq “
´β

n
1T logpA1q `

γ

n2
||A||2F (11)
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Algorithm 1 General Framework for IDGL and IDGL-ANCH

1: Input: X, yr,Ap0q
s

2: Parameters: m, ε, α, β, γ, λ, δ, T , η, kr, ss
3: Output: Θ, py, rAptq or Rptq

4: rAp0q
Ð kNNpX, kqs {kNN-graph if no initial Ap0q}

5: tÐ 1
6: StopCond Ð |Aptq

´Apt´1q
|
2
F ą δ|Ap1q

|
2
F if IDGL else |Rptq

´Rpt´1q
|
2
F ą δ|Rptq

|
2
F

7: while (pt ““ 1 or StopCond ) and t ď T do
8: if IDGL then
9: Aptq

Ð GLpXq or GLpZpt´1q
q using Eq. (1) {Refine adj. matrix}

10: rAptq
Ð tAp0q,Aptq,Ap1q

u using Eq. (3) {Combine refined and raw adj. matrices}
11: Zptq Ð GNN1p rAptq,Xq using Eq. (4) {Refine node embeddings}
12: else
13: Rptq

Ð GLpX,XU q or GLpZpt´1q,Z
pt´1q
U q using Eq. (2) {Refine affinity matrix}

14: Zptq Ð GNN1ptA
p0q,Rptq,Rp1q

u,Xq using Eqs. (8) and (9) {Refine node embeddings}
15: end if
16: py Ð GNN2p rAptq,Zptqq using Eq. (4) if IDGL else GNN2ptA

p0q,Rptq,Rp1q
u,Zptqq using Eqs. (8)

and (9)
17: Lptqpred Ð LOSS1ppy,yq using Eq. (4)

18: LptqG Ð αΩpAptq,Xq ` fpAptq
q if IDGL else αΩppBptq,XU

q ` fppBptqq where pBptq “

RptqJ∆´1Rptq

19: Lptq Ð Lptqpred ` LptqG and tÐ t` 1
20: end while
21: LÐ Lp1q `

řt
i“2 L

piq
{pt´ 1q

22: Back-propagate L to update model weights Θ {In training phase only}

where || ¨ ||F denotes the Frobenius norm of a matrix. The first term penalizes the formation of
disconnected graphs via the logarithmic barrier, and the second term controls sparsity by penalizing
large degrees due to the first term.

We then define the overall graph regularization loss as the sum of the above losses LG “ αΩpA,Xq`
fpAq, which is able to control the smoothness, connectivity and sparsity of the learned graph where
α, β and γ are all non-negative hyperparameters.

Anchor graph regularization. As shown in Eq. (6), we can obtain a row-normalized adjacency
matrix B for the anchor graph Q in Opns2q time complexity. In order to control the quality of the
learned node-anchor affinity matrix R (which can result in implicit control of the quality of the node
adjacency matrix A), we apply the aforementioned graph regularization techniques to the anchor
graph. It is worthing noting that our proposed graph regularization loss is only applicable to non-
negative and symmetric adjacency matrices [26]. Therefore, instead of applying graph regularization
to B which is often not symmetric, we opt to apply graph regularization to its unnormalized version
pB “ RJ∆´1R as LG “ αΩppB,XU q ` fppBq, where XU denotes the set of anchor embeddings
sampled from the set of node embeddings X.

2.6 Joint Learning with A Hybrid Loss

Compared to previous works which directly optimize the adjacency matrix based on either graph
regularization loss [26], or task-dependent prediction loss [15], we propose to jointly and iteratively
learning the graph structure and the GNN parameters by minimizing a hybrid loss function combining
both the task prediction loss and the graph regularization loss, namely, L “ Lpred ` LG .

The full algorithm of the IDGL framework is presented in Algorithm 1. As we can see, our model
repeatedly refines the adjacency matrix with updated node embeddings (Eq. (1)), and refines the
node embeddings (Eqs. (3) and (4)) with the updated adjacency matrix until the difference between
adjacency matrices at consecutive iterations are smaller than certain threshold. Note that compared
to using a fixed number of iterations globally, our dynamic stopping criterion is more beneficial,
especially for mini-batch training. At each iteration, a hybrid loss combining both the task-dependent
prediction loss and the graph regularization loss is computed. After all iterations, the overall loss is
back-propagated through all previous iterations to update the model parameters. Notably, Algorithm 1
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is also applicable to IDGL-ANCH. The major differences between IDGL and IDGL-ANCH are how
we compute adjacency (or affinity) matrix, and perform message passing and graph regularization.

3 Experiments

In this section, we conduct extensive experiments to verify the effectiveness of IDGL and IDGL-
ANCH in various settings. The implementation of our proposed models is publicly available at
https://github.com/hugochan/IDGL.

Datasets and baselines. The benchmarks used in our experiments include four citation network
datasets (i.e., Cora, Citeseer, Pubmed and ogbn-arxiv) [48, 21] where the graph topology is available,
three non-graph datasets (i.e., Wine, Breast Cancer (Cancer) and Digits) [11] where the graph
topology does not exist, and two text benchmarks (i.e., 20Newsgroups data (20News) and movie
review data (MRD)) [32, 46] where we treat a document as a graph containing each word as a node.
The first seven datasets are all for node classification tasks in the transductive setting, and we follow
the experimental setup of previous works [29, 15, 21]. The later two datasets are for graph-level
prediction tasks in the inductive setting. Please refer to Appendix C.1 for detailed data statistics.

Our main baseline is LDS [15] which however is incapable of handling inductive learning problems,
we hence only report its results on transductive datasets. In addition, for citation network datasets, we
include other GNN variants (i.e., GCN [29], GAT [52], GraphSAGE [18], APPNP [30], H-GCN [20]
and GDC [31]) as baselines. For non-graph and text benchmarks where the graph topology is
unavailable, we conceive various GNNkNN baselines (i.e., GCNkNN, GATkNN and GraphSAGEkNN)
where a kNN graph on the data set is constructed during preprocessing before applying a GNN model.
For text benchmarks, we include a BiLSTM [19] baseline. The reported results are averaged over 5
runs with different random seeds.

Experimental results. Table 1 shows the results of transductive experiments. First of all, IDGL
outperforms all baselines in 4 out of 5 benchmarks. Besides, compared to IDGL, IDGL-ANCH
is more scalable and can achieve comparable or even better results. In a scenario where the graph
structure is available, compared to the state-of-the-art GNNs and graph learning models, our models
achieve either significantly better or competitive results, even though the underlying GNN component
of our models is a vanilla GCN. When the graph topology is not available (thus GNNs are not directly
applicable), compared to graph learning baselines, IDGL consistently achieves much better results
on all datasets. Compared to our main graph learning baseline LDS, our models not only achieve
significantly better performance, but also are more scalable. The results of inductive experiments
are shown in Table 2. Unlike LDS which cannot handle inductive setting, the good performance on
20News and MRD demonstrates the capability of IDGL on inductive learning.

Table 1: Summary of results in terms of classification accuracies (in percent) on transductive
benchmarks. The star symbol indicates that we ran the experiments. The dash symbol indicates that
reported results were unavailable or we were not able to run the experiments due to memory issue.

Model Cora Citeseer Pubmed ogbn-arxiv Wine Cancer Digits
GCN 81.5 70.3 79.0 71.7 (0.3) — — —
GAT 83.0 (0.7) 72.5 (0.7) 79.0 (0.3) — — — —
GraphSAGE 77.4 (1.0) 67.0 (1.0) 76.6 (0.8) 71.5 (0.3) — — —
APPNP — 75.7 (0.3) 79.7 (0.3) — — — —
H-GCN 84.5 (0.5) 72.8 (0.5) 79.8 (0.4) — — — —
GCN+GDC 83.6 (0.2) 73.4 (0.3) 78.7 (0.4) — — — —
LDS 84.1 (0.4) 75.0 (0.4) — — 97.3 (0.4) 94.4 (1.9) 92.5 (0.7)
GCNkNN˚ — — — — 95.9 (0.9) 94.7 (1.2) 89.5 (1.3)
GATkNN˚ — — — — 95.8 (3.1) 88.6 (2.7) 89.8 (0.6)
GraphSAGEkNN˚ — — — — 96.5 (1.1) 92.8 (1.0) 88.4 (1.8)
LDS* 83.9 (0.6) 74.8 (0.3) — — 96.9 (1.4) 93.4 (2.4) 90.8 (2.5)
IDGL 84.5 (0.3) 74.1 (0.2) — — 97.8 (0.6) 95.1 (1.0) 93.1 (0.5)
IDGL-ANCH 84.4 (0.2) 72.0 (1.0) 83.0 (0.2) 72.0 (0.3) 98.1 (1.1) 94.8 (1.4) 93.2 (0.9)

Ablation study. Table 3 shows the ablation study results on different modules in our models. we
can see a significant performance drop consistently for both IDGL and IDGL-ANCH on all datasets
by turning off the iterative learning component (i.e., iterating only once), indicating its effectiveness.
Besides, we can see the benefits of jointly training the model with the graph regularization loss.
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Table 2: Summary of results in terms of classification accuracies or regression scores (R2) (in percent)
on inductive benchmarks.

Methods 20News MRD
BiLSTM 80.0 (0.4) 53.1 (1.4)
GCNkNN 81.3 (0.6) 60.1 (1.5)
IDGL 83.6 (0.4) 63.7 (1.8)
IDGL-ANCH 82.9 (0.3) 62.9 (0.4)

Table 3: Ablation study on various node/graph classification datasets.
Methods Cora Citeseer Wine Cancer Digits 20News
IDGL 84.5 (0.3) 74.1 (0.2) 97.8 (0.6) 95.1 (1.0) 93.1 (0.5) 83.6 (0.4)
w/o graph reg. 84.3 (0.4) 71.5 (0.9) 97.3 (0.8) 94.9 (1.0) 91.5 (0.9) 83.4 (0.5)
w/o IL 83.5 (0.6) 71.0 (0.8) 97.2 (0.8) 94.7 (0.9) 92.4 (0.4) 83.0 (0.4)
IDGL-ANCH 84.4 (0.2) 72.0 (1.0) 98.1 (1.1) 94.8 (1.4) 93.2 (0.9) 82.9 (0.3)
w/o graph reg. 83.2 (0.8) 70.1 (0.8) 97.4 (1.8) 94.8 (1.4) 92.0 (1.3) 82.5 (0.7)
w/o IL 83.6 (0.2) 68.6 (0.7) 96.4 (1.5) 94.0 (2.6) 93.0 (0.4) 82.3 (0.3)

Model analysis. To evaluate the robustness of IDGL to adversarial graphs, we construct graphs
with random edge deletions or additions. Specifically, for each pair of nodes in the original graph,
we randomly remove (if an edge exists) or add (if no such edge) an edge with a probability 25%,
50% or 75%. As shown in Fig. 3, compared to GCN and LDS, IDGL achieves better or comparable
results in both scenarios. While both GCN and LDS completely fail in the edge addition scenario,
IDGL performs reasonably well. We conjecture this is because the edge addition scenario is more
challenging than the edge deletion scenario by incorporating misleading additive random noise to the
initial graph. And Eq. (3) is formulated as a form of skip-connection, by lowering the value of λ (i.e.,
tuned on the development set), we enforce the model to rely less on the initial noisy graph.

(a) Edge deletion (b) Edge addition

Figure 3: Test accuracy (˘ standard deviation) in percent for the edge attack scenarios on Cora.

(a) Convergence plot on Cora. (b) Stopping strategy comparison on Cora.

Figure 4: Convergence and stopping strategy study on Cora (Single run results).
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In Fig. 4a (and Appendix B.1), we show the evolution of the learned adjacency matrix and accuracy
through iterations in the iterative learning procedure in the testing phase. We compute the difference
between adjacency matrices at consecutive iterations as δptqA “ ||Aptq ´Apt´1q||2F {||A

ptq||2F which
typically ranges from 0 to 1. As we can see, both the adjacency matrix and accuracy converge
quickly. This empirically verifies the analysis we made on the convergence property of IDGL
in Appendix A.2. Please note that this convergence property is not due to the oversmoothing effect
of GNNs [56, 33], because we only employ a two-layered GCN as the underlying GNN module of
IDGL in our experiments.

We compare the training efficiency of IDGL and IDGL-ANCH with other baselines. As shown
in Table 4, IDGL is consistently faster than LDS, but in general, they are comparable. Note that
IDGL has comparable model size compared to LDS. For instance, on the Cora data, the number of
trainable parameters of IDGL is 28,836, and for LDS, it is 23,040. And we see a large speedup of
IDGL-ANCH compared to IDGL. Note that we were not able to run IDGL on Pubmed because of
memory limitation. The theoretical complexity analysis is provided in Appendix A.3.

We also empirically study the stopping strategy (Fig. 4b and Appendix B.2), visualize the graph
structures learned by IDGL (Appendix B.3), and conduct hyperparameter analysis (Appendix B.4).
Details on model settings are provided in Appendix C.2.

4 Related Work

Table 4: Mean and standard deviation of training time
(5 runs) on various benchmarks (in seconds).

Data Cora Citeseer Pubmed
GCN 3 (1) 5 (1) 29 (4)
GAT 26 (5) 28 (5) —
LDS 390 (82) 585 (181) —
IDGL 237 (21) 563 (100) —
w/o IL 49 (8) 61 (15) —
IDGL-ANCH 83 (6) 261 (50) 323 (53)
w/o IL 28 (4) 69 (9) 71 (17)

The problem of graph structure learning
has been widely studied in different fields
from different perspectives. In the field of
graph signal processing, researchers have
explored various ways of learning graphs
from data [10, 12, 53, 27, 3, 1], with certain
structural constraints (e.g., sparsity) on the
graphs. This problem has also been studied
in the literature of clustering analysis [4, 22]
where they aimed to simultaneously per-
form the clustering task and learn similarity
relationships among objects. These works
all focused on unsupervised learning setting
without considering any supervised downstream tasks, and were incapable of handling inductive
learning problems. Other related works include structure inference in probabilistic graphical mod-
els [9, 66, 62], and graph generation [38, 49], which have a different goal from ours.

In the field of GNNs [29, 16, 18, 35, 63], there is a line of research on developing robust GNNs [50]
that are invulnerable to adversarial graphs by leveraging attention-based methods [5], Bayesian
methods [13, 64], graph diffusion-based methods [31], and various assumptions on graphs (e.g.,
low rank and sparsity) [14, 24, 65]. These methods usually assume that the initial graph structure
is available. Recently, researchers have explored methods to automatically construct a graph of
objects [45, 8, 34, 15, 40] or words [39, 6, 7] when applying GNNs to non-graph structured data.
However, these methods merely optimize the graphs toward the downstream tasks without the explicit
control of the quality of the learned graphs. More recently, [15] proposed the LDS model for jointly
learning the graph and the parameters of GNNs by leveraging the bilevel optimization technique.
However, by design, their method is unable to handle the inductive setting. Our work is also related
to Transformer-like approaches [51] that learn relationships among objects by leveraging multi-head
attention mechanism. However, these methods do not focus on the graph learning problem and were
not designed to utilize the initial graph structure.

5 Conclusion

We proposed a novel IDGL framework for jointly and iteratively learning the graph structure and
embeddings optimized for the downstream task. Experimental results demonstrate the effectiveness
and efficiency of the proposed models. In the future, we plan to explore effective techniques for
handling more challenging scenarios where both graph topology and node features are noisy.
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Broader Impact

The fundamental goal of our research is to develop a method for jointly learning graph structures
and embeddings that are optimized for (semi-)supervised downstream tasks. Our technique can be
widely applied to a large range of applications, including social network analysis, natural language
processing (e.g., question answering and text generation), drug discovery and community detection.
Conceptually, any application with the purpose of jointly learning the graph structures and embeddings
in order to perform well in downstream tasks. Those potential applications range from computer
vision, natural language processing, and network analysis. For instance, our research might be used
to help better capture the semantic relationships between word tokens (beyond a sequence of tokens)
in natural language processing.

There are many benefits of using our method as a tool, such as applying graph neural networks to
non-graph structured data without manual graph construction, and learning node/graph embeddings
that are more robust to noisy input graphs. Those benefits that might be utilized by a large number of
potential applications may have a board range of societal impacts:

• the use of our research could improve and speed up the process of learning meaningful
graphs from noisy/incomplete graphs (e.g., social networks) or even non-graph structured
data (e.g., text and images).

• the use of our research could improve the robustness of graph neural networks to
noisy/incomplete graph-structured data in terms of learning good node/graph embeddings
for downstream task.

We would encourage the research to explore similar approaches in more specific real-world appli-
cations. We would also suggest the research to understand the adversarial robustness of the use of
graph neural networks in safety/security-critical applications.
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A Theoretical Model Analysis

A.1 Theoretical Proof of Recovering Node and Anchor Graphs from Affinity Matrix R

It is worth noting that a node-anchor affinity matrix R serves as a weighted adjacency matrix of a
bipartite graph B. We hence establish stationary Markov random walks [42] by defining the one-step
transition probabilities as follows,

pp1qpuk|viq “
Rik

řs
k1“1Rik1

, pp1qpvi|ukq “
Rik

řn
i1“1Ri1k

, @vi P V, @uk P U (12)

We can further compute the two-step transition probabilities between nodes as follows,

pp2qpvj |viq “
s

ÿ

k“1

pp1qpvj |ukqp
p1qpuk|viq “

s
ÿ

k“1

Rjk
řn

j1“1Rj1k

Rik
řs

k1“1Rik1

“

s
ÿ

k“1

Rjk

Λkk

Rik

∆ii
(13)

where Λkk “
řn

j1“1Rj1k and ∆ii “
řs

k1“1Rik1 . Therefore, we can recover a row-normalized
adjacency matrix A P Rnˆn for the node graph as Aij “ pp2qpvj |viq, which can be further written in
a compact form A “ ∆´1RΛ´1RJ.

Similarly, we can compute the two-step transition probabilities between anchors as follows,

pp2qpur|ukq “
n

ÿ

i“1

pp1qpur|viqp
p1qpvi|ukq “

n
ÿ

i“1

Rir
řs

r1“1Rir1

Rik
řn

i1“1Ri1k
“

n
ÿ

i“1

Rir

∆ii

Rik

Λkk
(14)

And a row-normalized adjacency matrix B P Rsˆs for the anchor graph Q can be formulated as
Bkr “ pp2qpur|ukq. And we can obtain B “ Λ´1RJ∆´1R.

A.2 Theoretical Convergence Analysis

While it is challenging to theoretically prove the convergence of the proposed iterative learning
procedure due to the arbitrary complexity of the model, here we want to conceptually understand why
it works in practice. Fig. 5 shows the information flow of the learned adjacency matrix A and the
updated node embedding matrix Z during the iterative procedure. For the sake of simplicity, we omit
some other variables such as rA. As we can see, at t-th iteration, Aptq is computed based on Zpt´1q

(Line 9), and Zptq is computed based on rAptq (Line 11) which is computed based on Aptq (Eq. (3)).
We further denote the difference between the adjacency matrices at the t-th iteration and the previous
iteration by δptqA . Similarly, we denote the difference between the node embedding matrices at the t-th
iteration and the previous iteration by δptqZ .

Figure 5: Information flow of iterative learning procedure.

If we assume that δp2qZ ă δ
p1q
Z , then we can expect that δp3qA ă δ

p2q
A because conceptually a more

similar node embedding matrix (i.e., smaller δZ) is supposed to produce a more similar adjacency
matrix (i.e., smaller δA) given the fact that model parameters keep the same through iterations.
Similarly, given that δp3qA ă δ

p2q
A , we can expect that δp3qZ ă δ

p2q
Z . Following this chain of reasoning,

we can easily extend it to later iterations. In order to see why the assumption δp2qZ ă δ
p1q
Z makes sense

in practice, we need to recall the fact that δp1qZ measures the difference between Zp1q and X, which is
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usually larger than the difference between Zp2q and Zp1q, namely δp2qZ . For example, the raw node
feature matrix X can be quite sparse in practice (e.g., in Cora and Citeseer), whereas Zp1q is typically
a dense matrix.

A.3 Model Complexity Analysis

As for IDGL, the cost of learning an adjacency matrix is Opn2hq for n nodes and data in Rh,
while computing node embeddings costs Opn2h` ndhq, computing task output costs Opn2dq, and
computing the total loss costs Opn2dq where d is the hidden size. We set the maximal number of
iterations to T , hence the overall complexity is OpTnpnh` nd` hdqq. If we assume that d « h and
n " d, the overall time complexity is OpTdn2q.
As for IDGL-ANCH, the cost of learning a node-anchor affinity matrix is Opnshq, while computing
node embeddings costs Opnsh ` ndh ` |E |hq, computing task output costs Opnsd ` |E |dq, and
computing the total loss costs Opns2 ` s2dq where |E | is the number of edges in the initial or
kNN graph G. With the assumption that the initial or kNN graph is usually very sparse in practice,
especially for large graphs, we hence set |E | “ kn where k is a constant denoting the average degree
of the initial or kNN graph. Therefore, we get the overall time complexity OpTnpds` d2 ` s2qq. If
we assume that n " s which usually holds true for large graphs, the overall time complexity is linear
with respect to the numbers of graph nodes n.

As for space complexity, compared to IDGL, IDGL-ANCH reduces it from Opn2q to Opnsq since it
only needs to store the nˆ s affinity matrix.

B Empirical Model Analysis

B.1 Convergence Test

Here, we show the evolution of the learned adjacency matrix and accuracy through iterations in
the iterative learning procedure in the testing phase. As we can see, both the adjacency matrix and
accuracy converge quickly.

Figure 6: Convergence study on Cora (single run results).

Figure 7: Convergence study on Citeseer (single run results).
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B.2 Stopping Strategy Analysis

Here, we empirically compare the effectiveness of two stopping strategies: i) using a fixed number of
iterations (blue line), and ii) using a stopping criterion to dynamically determine the convergence
(red line). As we can see, dynamically adjusting the number of iterations using the stopping criterion
works better in practice. Compared to using a fixed number of iterations globally, the advantage of
applying this dynamical stopping strategy becomes more clear when we are doing mini-batch training
since we can adjust when to stop dynamically for each example graph in the mini-batch.

Figure 8: Performance comparison (i.e., test accuracy in %) of two different stopping strategies on
Cora.

Figure 9: Performance comparison (i.e., test accuracy in %) of two different stopping strategies on
Citeseer.

B.3 Graph Visualization

Here, we visualize the graph structures (i.e., Aptq) learned by IDGL. As we can see, compared to the
initial graph structures, IDGL mainly forms graph structures within the same class of nodes, which
complement the initial graph structure. This is as expected because Aptq is computed based on the
updated node embeddings that are supposed to capture certain node label information.

B.4 Hyperparameter Analysis

A hyperparameter λ is used to balance the trade-off between using the learned graph structure and
the initial (or kNN) graph structure. In Table 5, we show the results of using different values of λ on
Cora.

We also study the effect of the hyperparameter s (i.e., the number of anchors in IDGL-ANCH). As
shown in Table 6, lower value of s can degrade the performance of IDGL-ANCH whereas after
certain optimal value, further increasing the number of anchors might not help the performance.
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(a) Initial graph (Ap0q) (b) Learned graph (Aptq)

Figure 10: Visualization of the initial graph and the learned graph on Cora. Colors indicate different
node labels.

(a) kNN graph (Ap0q) (b) Learned graph (Aptq)

Figure 11: Visualization of the kNN graph and the learned graph on Wine. Colors indicate different
node labels.

Table 5: Test scores (˘ standard deviation) with different values of λ on the Cora data.

Methods / λ 0.9 0.8 0.7 0.6 0.5
IDGL 83.6 (0.4) 84.5 (0.3) 83.9 (0.3) 82.4 (0.1) 80.9 (0.2)
IDGL-ANCH 83.2 (0.4) 84.4 (0.2) 83.5 (0.6) 82.9 (0.4) 54.6 (32.3)

Table 6: Test scores (˘ standard deviation) with different values of s for IDGL-ANCH on the Cora
and Pubmed data.

Methods / s 1,600 1,300 1,000 700 400 100
Cora 84.0 (0.4) 84.1 (0.5) 84.4 (0.2) 83.8 (0.2) 58.7 (30.5) 38.3 (25.9)
Pubmed 82.7 (0.2) 83.0 (0.4) 82.7 (0.4) 83.0 (0.2) 82.7 (0.3) 82.4 (0.5)
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C Details on Experimental Setup

C.1 Data Statistics

Table 7 shows the data statistics of the nine benchmarks used in our experiments.

Table 7: Data statistics. (clf. indicates classification and reg. indicates regression.)
Benchmarks #Nodes #Edges Train/Dev/Test Task Setting
Cora 2,708 (1 graph) 5,429 140/500/1,000 node clf. transductive
Citeseer 3,327 (1 graph) 4,732 120/500/1,000 node clf. transductive
Pubmed 19,717 (1 graph) 44,338 60/500/1,000 node clf. transductive
ogbn-arxiv 169,343 (1 graph) 1,166,243 90,941/29,799/48,603 node clf. transductive
Wine 178 (1 graph) N/A 10/20/158 node clf. transductive
Cancer 569 (1 graph) N/A 10/20/539 node clf. transductive
Digits 1,797 (1 graph) N/A 50/100/1,647 node clf. transductive
20News 317 (18,846 graphs) N/A 7,919/3,395/7,532 graph clf. inductive
MRD 389 (5,006 graphs) N/A 3,003/1,001/1,002 graph reg. inductive

C.2 Model Settings

Table 8: Hyperparameter for IDGL on all benchmarks.

Benchmarks λ η α β γ k ε m δ T
Cora 0.8 0.1 0.2 0.0 0.0 – 0.0 4 4.0e-5 10
Citeseer 0.6 0.5 0.4 0.0 0.2 – 0.3 1.0 1.0e-3 10
Wine 0.8 0.7 0.1 0.1 0.3 20 0.75 1 1.0e-3 10
Cancer 0.25 0.1 0.4 0.2 0.1 40 0.9 1 1.0e-3 10
Digits 0.4 0.1 0.4 0.1 0.0 24 0.65 8 1.0e-4 10
20News 0.1 0.4 0.5 0.01 0.3 950 0.3 12 8.0e-3 10
MRD 0.5 0.9 0.2 0.0 0.1 350 0.4 5 4.0e-2 10

Table 9: Hyperparameter for IDGL-ANCH on all benchmarks.

Benchmarks λ η α β γ k ε m δ T num./ratio of anchors
Cora 0.8 0.1 0.2 0.0 0.1 – 0.0 4 8.5e-5 10 1,000
Citeseer 0.6 0.5 0.5 0.1 0.2 – 0.2 4 2.0e-3 10 1,400
Pubmed 0.7 0.3 0.0 0.03 0.0 – 0.1 6 8.0e-5 10 700
ogbn-arxiv 0.8 0.1 0.2 0.0 0.0 – 0.9 1 1.0e-1 2 300
Wine 0.7 0.7 0.1 0.1 0.3 20 0.75 1 1.0e-3 10 200
Cancer 0.25 0.1 0.0 0.0 0.0 40 0.9 4 8.0e-4 10 100
Digits 0.3 0.3 0.4 0.1 0.0 24 0.65 8 1.0e-4 10 1,500
20News 0.1 0.3 0.4 0.0 0.3 950 0.4 12 1.0e-2 10 0.4
MRD 0.5 0.75 0.2 0.0 0.0 400 0.7 4 3.0e-2 10 0.4

In all our experiments, we apply a dropout ratio of 0.5 after GCN layers except for the output
GCN layer. During the iterative learning procedure, we also apply a dropout ratio of 0.5 after the
intermediate GCN layer, except for Citeseer (no dropout) and Digits (0.3 dropout). For experiments
on text benchmarks, we keep and fix the 300-dim GloVe vectors for words that appear more than 10
times in the dataset. For long documents, for the sake of efficiency, we cut the text length to maximum
1,000 words. We apply a dropout ratio of 0.5 after word embedding layers and BiLSTM layers. The
batch size is set to 16. And the hidden size is set to 128 and 64 for 20News and MRD, respectively.
For all other benchmarks, the hidden size is set to 16 to follow the original GCN paper. For the
text benchmarks, we apply a BiLSTM to a sequence of word embeddings. The concatenation of the
last forward and backward hidden states of the BiLSTM is used as the initial node features. We use
Adam [28] as the optimizer. For the text benchmarks, we set the learning rate to 1e-3. For all other
benchmarks, we set the learning rate to 0.01 and apply L2 norm regularization with weight decay
set to 5e-4. As for IDGL-ANCH, we set the number of anchors as a hyperparameter in transductive
experiments, while in inductive experiments, we set the ratio of anchors (proportional to the graph
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size) as a hyperparameter. In Table 8 and Table 9, we show the hyperparameters for IDGL and
IDGL-ANCH on all benchmarks, respectively. All hyperparameters are tuned on the development
set.
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