
QUESTION ANSWERING AND GENERATION FROM
STRUCTURED AND UNSTRUCTURED DATA

Yu Chen

Submitted in Partial Fullfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Approved by:
Dr. Mohammed J. Zaki, Chair

Dr. Bulent Yener
Dr. Alex Gittens

Dr. Qiang Ji
Dr. Lingfei Wu

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, New York

[August 2020]
Submitted June 2020

c© Copyright 2020

by

Yu Chen

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

ACKNOWLEDGMENT . x

ABSTRACT . xii

1. INTRODUCTION . 1

1.1 Question Answering . 1

1.1.1 Background . 1

1.1.1.1 A Brief History of Question Answering 1

1.1.1.2 Open-domain vs. Closed-domain Question Answering 2

1.1.1.3 Structured vs. Unstructured Knowledge Sources 2

1.1.2 Motivation . 3

1.1.3 Challenges . 4

1.1.3.1 Lexical Gap . 4

1.1.3.2 Complex Reasoning . 4

1.1.3.3 Conversational Question Answering 5

1.2 Question Generation . 6

1.2.1 Background . 6

1.2.1.1 A Brief History of Question Generation 6

1.2.1.2 Answer-agnostic vs. Answer-aware Question Generation . . 6

1.2.1.3 Structured vs. Unstructured Knowledge Sources 7

1.2.2 Motivation . 7

1.2.3 Challenges . 7

1.2.3.1 Context Modeling . 7

1.2.3.2 Utilizing Answer Information 8

1.2.3.3 Training Sequence Learning Models 8

1.2.3.4 Evaluation . 9

1.3 Contributions . 9

1.4 Outline . 11

2. RELATED WORK . 12

2.1 Knowledge Base Question Answering . 12

2.1.1 Semantic Parsing-based Approaches 12

2.1.2 Information Retrieval-based Approaches 13

iii

2.1.3 Complex Question Answering . 14

2.2 Machine Reading Comprehension . 16

2.2.1 Traditional Machine Reading Comprehension 16

2.2.2 Conversational Machine Reading Comprehension 16

2.3 Natural Question Generation from Knowledge Graphs 17

2.4 Natural Question Generation from Text . 18

2.5 Modern Deep Learning and Reinforcement Learning Methods 19

2.5.1 Recurrent Neural Networks . 20

2.5.2 Attention Mechanisms . 22

2.5.3 Memory Networks . 23

2.5.4 Graph Neural Networks . 24

2.5.5 Reinforcement Learning . 26

3. KNOWLEDGE BASE QUESTION ANSWERING 28

3.1 Overview . 28

3.2 Approach: BAMnet . 29

3.2.1 Input Module . 29

3.2.2 Memory Module . 29

3.2.3 Reasoning Module . 31

3.2.4 Answer Module . 34

3.2.5 Training and Testing . 35

3.2.6 Topic Entity Prediction . 36

3.3 Experiments . 37

3.3.1 Baseline Methods . 37

3.3.2 Data and Metrics . 37

3.3.3 Model Settings . 38

3.3.4 Experimental Results . 39

3.3.5 Ablation Study . 40

3.3.6 Interpretability Analysis . 41

3.3.7 Error Analysis . 42

3.4 Conclusion and Future Work . 43

4. CONVERSATIONAL MACHINE READING COMPREHENSION 45

4.1 Overview . 45

4.2 Approach: GraphFlow . 46

4.2.1 Encoding Layer . 46

iv

4.2.2 Reasoning Layer . 48

4.2.2.1 Question Understanding . 48

4.2.2.2 Context Graph Learning . 49

4.2.2.3 Context Graph Reasoning 50

4.2.3 Prediction Layer . 52

4.2.4 Training and Testing . 53

4.3 Experiments . 53

4.3.1 Baseline Methods . 53

4.3.2 Data and Metrics . 54

4.3.3 Model Settings . 55

4.3.4 Experimental Results . 56

4.3.5 Ablation Study . 57

4.3.6 Interpretability Analysis . 58

4.4 Conclusion and Future Work . 59

5. NATURAL QUESTION GENERATION FROM KGS 60

5.1 Overview . 60

5.2 Approach: Toward Subgraph Guided Knowledge Graph Question Generation
with Graph Neural Networks . 61

5.2.1 Problem Formulation . 61

5.2.2 Encoding Layer . 62

5.2.2.1 Encoding Nodes and Edges 62

5.2.2.2 Utilizing Target Answers . 63

5.2.3 Bidirectional Graph-to-Sequence Generator with Copying Mechanism 63

5.2.3.1 Bidirectional Graph Encoder 63

5.2.3.2 Handling Multi-relational Graphs 65

5.2.3.3 RNN Decoder with Node-level Copying 66

5.2.4 Training and Testing . 66

5.3 Experiments . 68

5.3.1 Baseline Methods . 68

5.3.2 Data and Metrics . 69

5.3.3 Model Settings . 70

5.3.4 Experimental Results . 71

5.3.5 Ablation Study . 72

5.3.6 Model Analysis . 73

5.3.7 Case Study . 74

5.3.8 QG-Driven Data Augmentation for QA 75

5.4 Conclusion and Future Work . 76

v

6. NATURAL QUESTION GENERATION FROM TEXT 77

6.1 Overview . 77

6.2 Approach: RL-based Graph2Seq Model for Natural Question Generation . . 78

6.2.1 Problem Formulation . 78

6.2.2 Deep Alignment Network . 79

6.2.2.1 Word-level Alignment . 81

6.2.2.2 Contextual-level Alignment 81

6.2.3 Bidiectional Graph-to-Sequence Generator 81

6.2.3.1 Passage Graph Construction 82

6.2.3.2 Bidirectional Gated Graph Neural Networks 83

6.2.3.3 RNN Decoder . 84

6.2.4 Hybrid Evaluator . 85

6.2.5 Training and Testing . 86

6.3 Experiments . 87

6.3.1 Baseline Methods . 87

6.3.2 Data and Metrics . 88

6.3.3 Model Settings . 89

6.3.4 Experimental Results . 89

6.3.5 Ablation Study . 91

6.3.6 Case Study . 92

6.3.7 Sensitivity Analysis of Hyperparameters 93

6.4 Conclusion and Future Work . 93

7. CONCLUSION AND FUTURE WORK . 95

7.1 Conclusion . 95

7.2 Future Work . 96

7.2.1 Question Answering . 97

7.2.1.1 Complex Question Answering 97

7.2.1.2 Conversational Question Answering 97

7.2.1.3 Question Answering from Multimodal Data 98

7.2.2 Question Generation . 98

7.2.2.1 Personalized Question Generation 98

7.2.2.2 Conversational Question Generation 98

7.2.2.3 Question Generation from Multimodal Data 99

7.2.2.4 Joint Learning of QA & QG 99

BIBLIOGRAPHY . 100

vi

APPENDIX . 129

A. PERMISSIONS . 129

vii

LIST OF TABLES

1.1 Types of complex questions. 5

3.1 Results on the WebQuestions test set. Bold: best in-category performance. . . 40

3.2 Ablation results on the WebQuestions test set. Gold topic entity is assumed to
be known. 41

3.3 Predicted answers of BAMnet w/ and w/o bidirectional attention on the We-
bQuestions test set. 43

4.1 Model and human performance (% in F1 score) on the CoQA test set. 56

4.2 Model and human performance (in %) on the QuAC test set. 56

4.3 Model and human performance (in %) on the DoQA test set. 56

4.4 Ablation study (in %) on the CoQA dev. set. 57

5.1 Data statistics. The min/max/avg statistics are reported on KG triples and
queries. 70

5.2 Automatic evaluation results on the WQ and the PQ test sets. 71

5.3 Human evaluation results (± standard deviation) on the WQ test set. 71

5.4 Ablation study on the WQ and the PQ test sets. 72

5.5 Effect of node/edge initial embeddings on the WQ test set. 73

5.6 Impact of directionality for G2S+AE on the PQ test set. 73

5.7 Results of RL-based G2S+AE on the WQ test set. 73

5.8 Results of RL-based G2S+AE on the PQ test set. 74

5.9 Generated questions on the WQ test set. Target answers are underlined. For
the sake of brevity, we only display the lowest level of the predicate hierarchy. 75

6.1 Automatic evaluation results on the SQuAD test set. 90

6.2 Human evaluation results (± standard deviation) on the SQuAD split-2 test set. 91

6.3 Ablation study on the SQuAD split-2 test set. 92

6.4 Generated questions on SQuAD split-2 test set. Target answers are underlined. 93

viii

LIST OF FIGURES

2.1 Architecture of the Long Short-Term Memory (LSTM) network. The picture
is from https://commons.wikimedia.org/wiki/File:The LSTM c
ell.png, licensed under version 4.0 of the Creative Commons CC-BY license
(CC BY 4.0). 21

2.2 A Key-Value Memory Network for question answering. The picture is from [185],
licensed under version 4.0 of the Creative Commons CC-BY license (CC BY 4.0). 24

2.3 Computation steps in a graph neural network block. 26

2.4 The agent–environment interaction in reinforcement learning. The picture is
from [168], licensed under Attribution-NonCommercial-NoDerivs 2.0 Generic
license (CC BY-NC-ND 2.0). 26

3.1 Overall architecture of the BAMnet model. 29

3.2 A working example from Freebase. Relations in Freebase have hierarchies where
high-level ones provide too broad or even noisy information about the relation.
Thus, we choose to use the lowest level one. 30

3.3 KB-aware attention module. CAT: concatenation, SelfAtt: self-attention, Ad-
dAtt: additive attention. 32

3.4 Attention heatmap generated by the reasoning module. Best viewed in color. . 42

4.1 Overall architecture of the proposed model. 46

4.2 Architecture of the proposed Recurrent Graph Neural Network for processing a
sequence of context graphs. 50

4.3 The highlighted part of the context indicates GraphFlow’s focus shifts between
consecutive question turns. 58

5.1 Overall architecture of our proposed model. Best viewed in color. 61

5.2 Effect of the number of GNN hops for G2S+AE on the PQ test set. 74

5.3 Performance of QG-driven KBQA method under different proportions of training
data. 75

6.1 Overall architecture of the proposed model. Best viewed in color. 79

6.2 The attention-based soft-alignment mechanism. 80

6.3 Effect of the number of GNN hops. 94

ix

ACKNOWLEDGMENT

First of all, I would like to express my sincere gratitude and appreciation to my adviser Prof.

Mohammed J. Zaki for always being so inspirational and supportive during my doctoral

studies. He is not only an excellent mentor with stringent academic attitude, rich source of

expertise and broad research vision, but also a very nice person who is always ready to listen

to my opinions and will respect them. I have often been impressed and encouraged by his

great passion for research as well as his creative ideas and remarkable insights. The body of

work presented in this dissertation would never have been possible without his continuous

guidance and support.

I would also like to sincerely thank the rest of my committee members Prof. Bulent

Yener, Prof. Alex Gittens, Prof. Qiang Ji and Dr. Lingfei Wu for their valuable time,

effort and insightful comments. Special thanks to Dr. Lingfei Wu for being such a great

collaborator and mentor. I have always enjoyed many pleasant and fruitful discussions with

him from which I have learned a lot. Prof. Qiang Ji taught a great deep learning course

which started my journey into Deep Learning. I learned a lot from the Computer Science

courses in our department. In this regard, I would like to thank Prof. Bulent Yener and

Prof. Alex Gittens.

Also I want to thank my current and former colleagues at RPI: Dr. Oshani W. Senevi-

ratne, Dr. Nidhi Rastogi, Yuchen Liang, Diya Li, Ananya Subburathinam, Vipula Rawte,

Jon Harris, Steven Haussmann, and Dylan Elliott. We have had many nice discussions and

I am glad to have had the opportunity to work with most of them on the same project.

In this regard, I would like to thank my current and former IBM colleagues in the HEALS

project: Dr. Ching-Hua Chen, Dr. James Codella, Chandramouli Maduri, Dr. Sun Si and

Dr. Kim Walter. In addition, I have to thank Dr. Lifu Huang from UIUC and Dr. Liu Yang

from UMass (now at Google) who have provided valuable suggestions at important moments

during my doctoral studies.

I am indebted to Dr. Lazaros Polymenakos who was my manager during my internship.

I spent a wonderful summer in Yorktown Heights working at IBM Research. Thanks are

also due to my other IBM colleagues during the internship.

I am thankful to Tracy Hoffman, Shannon Carrothers, Chris Coonrad and Terry Hay-

den, who have been or had been providing administrative support and organizing depart-

x

ment activities constantly. Also thanks to David Blevins, Steven Lindsey and Peter Bailie

for maintaining the server clusters and kindly helping me take advantage of the available

computation power.

I would also like to take this opportunity to express my sincere appreciation to my

dear girlfriend, Yuwei Guo, for her continuous love, support, and affection.

Last but not the least, my genuine gratefulness must go to my parents who raised me

up and always support me with all their heart. I appreciate my parents for all their sacrifice

and support on my education and pursuit of my dream. They are the most important people

in my world and I dedicate this thesis to them.

xi

ABSTRACT

This dissertation focuses on two different but related natural language processing problems,

namely, question answering and question generation. Automated question answering (QA) is

the process of finding answers to natural language questions. This problem has been studied

since the early days of artificial intelligence and recently has drawn increasing attention.

Automatic question answering usually relies on some underlying knowledge sources, e.g., a

knowledge base (KB), a database or just free-form text from which answers can be gleaned.

As such question answering has numerous applications in areas such as natural language

interfaces to databases and spoken dialog systems.

We identify in particular three main challenges of question answering. The first chal-

lenge is the lexical gap between the questions and the underlying knowledge source. Human

language is very flexible. The same question can be expressed in various ways while the

knowledge source may use a canonical lexicon. It is therefore nontrivial to map a natural

language question to the knowledge source. The second challenge is the problem of complex

reasoning in question answering. Many realistic questions are complex since they require

multi-hop reasoning. In order to answer those complex questions, an agent typically needs

to perform a series of discrete symbolic operations such as arithmetic operations, logical

operations, quantitative operations and comparative operations. Making machines perform

complex reasoning automatically is fundamentally challenging. Even though one can pre-

define a set of discrete operations an agent can take, the program search space is still very

large because of combinatorial explosion. The third challenge is conversational question an-

swering. In real world scenarios, most questions are asked in a conversational manner. It is

quite often that a question is asked within a certain conversational context. In other words,

in a conversation, sequential questions are asked and a question being asked at a given turn

might refer back to some previous questions or answers. Conversational question answering

is significantly more challenging than single-turn question answering since the conversation

history must be taken into account effectively in order to understand the question correctly.

Natural question generation (QG) is the task of generating natural language questions

from a given form of data such as text, images, tables and knowledge graphs (KGs). As a

dual task of question answering, question generation has many useful applications such as

improving the question answering task by providing more training data, generating practice

xii

exercises and assessments for educational purposes, and helping dialog systems to kick-start

and continue a conversation with human users.

We identify in particular three main challenges of question generation. The first chal-

lenge is how to effectively model the context information (e.g., text and KGs). It is extremely

important for a QG system to well understand the semantic meanings of the context so as

to generate high-quality questions. Particularly, it becomes challenging to model long/large

context with rich structure information. The second challenge is how to effectively leverage

the answer information for question generation. Answer information is crucial for generating

relevant and high quality questions because it can serve as a guidance on “what to ask”

from the given context. However, most existing methods do not fully utilize the answer

information when generating questions. The third challenge is how to effectively optimize

a sequence learning model. Cross-entropy loss is widely used for training sequence learning

neural networks. However, it has been observed that optimizing cross-entropy based train-

ing objectives for sequence learning does not always produce the best results on discrete

evaluation metrics. Major limitations of this strategy include exposure bias and evaluation

discrepancy between training and testing.

In this dissertation, we propose novel and effective approaches to address the above

challenges of QA and QG tasks. On the QA side, we first propose a modular deep learning

approach to automatically answer natural language questions over a large-scale knowledge

base. Specifically, we propose to directly model the two-way flow of interactions between the

questions and the underlying KB. The proposed model is able to perform multi-hop reason-

ing in a KB and requires no external resources and very few hand-crafted features. We show

that on a popular WebQuestions KBQA benchmark, our model significantly outperforms

previous information retrieval based methods while remaining competitive with handcrafted

semantic parsing based methods. Then, we present a novel graph neural network (GNN)

based model which is able to capture conversational flow in a dialog when executing the task

of conversational machine reading comprehension where the knowledge source is free-form

text. Based on the proposed Recurrent Graph Neural Network, we introduce a flow mecha-

nism to model the temporal dependencies in a sequence of context graphs which represent

the conversational history. On three public benchmarks, the proposed model shows supe-

rior performance compared to existing state-of-the-art methods. In addition, visualization

experiments show that our model can offer good interpretability for the reasoning process.

xiii

On the QG side, we first present a novel bidirectional graph-to-sequence model for the

task of QG from KGs. Specifically, we propose to apply a bidirectional graph-to-sequence

model to encode the KG subgraph. Furthermore, we enhance our Recurrent Neural Network

(RNN) based decoder with the novel node-level copying mechanism to allow directly copying

node attributes from the KG subgraph to the output question. Both automatic and human

evaluation results demonstrate that our model achieves new state-of-the-art scores, outper-

forming existing methods by a significant margin on two QG benchmarks. Experiments also

show that our QG model can consistently benefit the QA task as a mean of data augmen-

tation. Then, we propose a reinforcement learning (RL) based graph-to-sequence model for

the task of QG from text. Our model consists of a graph-to-sequence generator with a novel

Bidirectional Gated Graph Neural Network based encoder to embed the passage, and a hy-

brid evaluator with a mixed objective combining both the cross-entropy loss and the RL loss

to ensure the generation of syntactically and semantically valid text. We also introduce an

effective Deep Alignment Network for incorporating the answer information into the passage

at both the word and contextual levels. Our model is end-to-end trainable and achieves

new state-of-the-art scores, outperforming existing methods by a significant margin on the

standard SQuAD benchmark.

xiv

CHAPTER 1

INTRODUCTION

1.1 Question Answering

1.1.1 Background

1.1.1.1 A Brief History of Question Answering

Automated question answering (QA) is the task of answering natural language ques-

tions using certain knowledge sources. It has been explored since the early days of artificial

intelligence in many areas of Natural Language Processing (NLP) research. Natural language

interfaces to databases (NLIDBs) allow users to access information stored in a database via

natural language queries, instead of restricted SQL queries, which can make the database

system more user-friendly. First attempts for NLIDBs appeared as early as the sixties. LU-

NAR [1] was designed to answer natural language questions about the geological analysis

of lunar rocks returned by the Apollo missions. This research area became very popular

in the mid-eighties. Despite the interest and numerous attempts, NLIDBs did not gain the

expected rapid and wide commercial acceptance due to their poor performance and the dif-

ficulty for porting and configuring them. Question answering has also been an important

topic in spoken dialog systems, which aim to enable computer systems to converse with a

human with voice.

Since the nineties, researchers have showed great interest in open domain question

answering. [2] designed a system called MURAX to answer general-knowledge questions using

an on-line encyclopedia. Since 1999, the Text Retrieval Conference (TREC) has hosted QA

competition tracks every year to advance the research on open-domain question answering.

Portions of this chapter previously appeared as: Y. Chen, L. Wu, and M. J. Zaki, “Bidirectional attentive
memory networks for question answering over knowledge bases,” in Proc. 2019 Conf. N. Amer. Chap. Assoc.
Comput. Ling.: Human Lang. Technol., vol. 1, Jun. 2-7, 2019, pp. 2913–2923.

Portions of this chapter previously appeared as: Y. Chen, L. Wu, and M. J. Zaki, “Graphflow: Exploiting
conversation flow with graph neural networks for conversational machine comprehension,” in Proc. 29th Int.
Joint Conf. Artif. Intell., Jul. 2020, pp. 1230–1236. Copyright c© 2020, IJCAI (https://www.ijcai.
org).

Portions of this chapter have been submitted to: Y. Chen, L. Wu, and M. J. Zaki, “Toward subgraph
guided knowledge graph question generation with graph neural networks,” in Proc. 2020 Conf. Empirical
Meth. Natural Lang. Process.

Portions of this chapter previously appeared as: Y. Chen, L. Wu, and M. J. Zaki, “Reinforcement
learning based graph-to-sequence model for natural question generation,” in Proc. 8th Int. Conf. Learn.
Representations, Apr. 26-30, 2020. [Online]. Available: https://openreview.net/forum?id=HygnDhEtvr

1

2

With the rapid evolution of deep learning, recent attempts [3]–[10] focus on applying

deep learning approaches to this old yet very challenging research area.

1.1.1.2 Open-domain vs. Closed-domain Question Answering

According to whether the types of questions accepted are limited or not, we can gen-

erally categorize QA systems into two camps: open-domain question answering and closed-

domain question answering.

Open-domain question answering deals with all kinds of questions about any topic. In

other words, we do not restrict the types of questions which can be asked and hence the

knowledge needed to answer those questions. Building such a QA system can be extremely

hard since the system is supposed to be generic enough to be able to answer all kinds

of questions and also scalable enough to be able to process potentially the whole world

knowledge.

Unlike open-domain question answering that is ambitious, closed-domain question an-

swering deals with questions under a specific domain, e.g., weather, healthcare or travel.

Due to this restricted setting, a QA system can expect that the types of questions that will

be asked as well as the knowledge needed to answer those questions are limited and known

beforehand. This makes the problem more tractable compared to open-domain question

answering, as one can exploit domain-specific prior knowledge when designing the system so

as to make it work reasonably well for a specific domain. Nowadays, almost all successful

commercial QA products such as Amazon Alexa, Google Home and Apple HomePod are

essentially closed-domain QA systems, though the domains are continually expanding.

1.1.1.3 Structured vs. Unstructured Knowledge Sources

The world knowledge can be stored in very different forms. We can generally clas-

sify knowledge sources into two categories: structured knowledge sources and unstructured

knowledge sources. Here we discuss in particular the following three types of knowledge

sources which we will cover in this dissertation.

Free-form text is the most common and prevalent form of knowledge source. However, it

is unstructured and hence not machine-readable.

Databases are also widely used to store knowledge and they are structured. A database is

an organized collection of data, generally stored and accessed electronically from a computer

3

system. Relational database systems model data as rows and columns in a series of tables.

Knowledge bases (KBs) are a special kind of database for knowledge management. They

provide the means for the computerized collection, organization, and retrieval of knowledge.

A KB basically contains a large number of triples, where each triple consists of a subject,

a relation and an object. A KB can store a lot of entities and the relations among those

entities. Over the past decade, many large-scale open-domain knowledge bases (KBs) such

as DBPedia [11], FreeBase [12], Yago3 [13] and WikiData [14] have been created and some

of them are still growing.

Accordingly, we can categorize QA systems into different camps based on their knowl-

edge sources, such as Knowledge Base Question Answering (KBQA) which uses a KB as

knowledge source, Table-based Question Answering (TBQA) which uses a database as knowl-

edge source and Machine Reading Comprehension (MRC) which uses free-form text as knowl-

edge source.

Notably, one can design QA systems using hybrid knowledge sources. As such an open-

domain QA system should take advantage of as many knowledge sources as possible so as to

have a great coverage of world knowledge.

1.1.2 Motivation

Question answering finds several compelling applications, such as those briefly de-

scribed next.

Natural language interfaces to databases. Natural language interfaces to databases

(NLIDBs) aim to directly query a database system via natural language instead of some

structured logic forms such as SQL. Compared to SQL, natural language queries are more

flexible and user-friendly, because users do not need to have any knowledge about database

systems or the schemas of the databases they are accessing. The underlying QA system is

able to handle everything from natural language understanding to query execution.

Spoken dialog systems. A spoken dialog system is another application area of automated

question answering. One of the most crucial parts in human-machine conversation is actually

question answering. Virtual assistants such as Amazon Alexa provide many services to

humans by answering questions.

Beyond search engines. While modern search engines such as Google can provide users a

bunch of relevant documents which might contain the answers to their questions, users still

4

have to dig into a few documents at the top of the list in order to get the exact answers.

Automated question answering goes one step further by providing users the exact answers

they are looking for using various kinds of resources.

Adaptive education. Automated question answering can also be applied for adaptive

education. Learners can learn knowledge and skills by asking an agent questions and getting

answers from the agent.

1.1.3 Challenges

1.1.3.1 Lexical Gap

Human language is very flexible. One big challenge for questing answering is the lexical

gap between the questions and the underlying knowledge source. The same question can be

expressed in various ways in NL while the knowledge source may use another lexicon. It

is therefore nontrivial to map an NL question to the knowledge source. For instance, it

can be difficult for machines to map a question Who is the wife of President Obama? to

a triple [Barack Obama, married to, Michelle Obama]. In order to do this, the system must

understand “wife” is semantically related to “marry” and “President Obama” is an alias

of “Barack Obama”. However, most existing embedding-based methods [5], [9], [15]–[18]

for question answering ignore the subtle inter-relationships between the question and the

knowledge source.

1.1.3.2 Complex Reasoning

Many realistic questions are complex since they require multi-hop reasoning. In order

to answer those complex questions, an agent typically needs to perform a series of discrete

symbolic operations such as arithmetic operations, logical operations, quantitative operations

and comparative operations. Recent years have observed a surge of interest in complex

question answering. Many benchmarks have been released over the past few years for complex

KBQA [19]–[22], MRC [23] and TBQA [24], [25]. Table 1.1 shows the various types of

complex KBQA questions that the CSQA dataset [19] explored.

Making machines perform complex reasoning automatically is fundamentally challeng-

ing. Even though one can predefine a set of discrete operations an agent can take, the

program search space is still quite large because of combinatorial explosion. Here, we briefly

cover two main research streams for tackling this problem: symbolic AI and connectionist

5

Table 1.1: Types of complex questions.

Reasoning Type Example

Logical
Union Which rivers flow through India or China?

Intersection Which rivers flow through India and China?
Difference Which rivers flow through India but not China?

Verification Boolean Does the Hudson River flow through New York City?

Quantitative
Count How many revers flow through the USA?

Min/Max Which city in China has maximum number of rivers?
Atleast/Atmost Which country has at least N cities?

Comparative
More/Less Which countries have more people than Japan?

Count over More/Less How many countries have more people than Japan?

AI, which can help us better understand why this is a challenging problem.

Symbolic AI. Symbolic approaches are based on high-level symbolic representations of

problems, logic and search, and thus are efficient in execution of discrete operations. How-

ever, they either heavily rely on predefined rules or are very difficult to train especially at

initial stages.

Connectionist AI. Deep neural networks-based approaches can be trained in an end-to-end

fashion and have shown great promise in many question answering tasks [6], [8]. However,

they are notorious for their incapability of executing symbolic operations and lack of explicit

interpretability.

In Section 2.1.3, we will discuss recent attempts [6], [7], [25]–[32] on solving the complex

reasoning problem in question answering and we will see that many of them are trying to

combine the benefits of the above two camps.

1.1.3.3 Conversational Question Answering

In real world scenarios, most questions are asked in a conversational manner. It is

quite often that a question is asked within a certain conversational context. In other words,

in a conversation, sequential questions are asked and a question being asked at a certain

turn might refer back to some previous questions or answers, typically by coreference or

ellipsis. Recently, many conversational question answering benchmarks have been proposed

for KBQA [19], [33], TBQA [34]–[36] and MRC [37]–[40].

Conversational question answering is significantly more challenging than single-turn

question answering since conversation history must be taken into account effectively in order

to understand the question correctly. In those human-to-human conversations [19], [33], [37]–

6

[39], the focus often shifts as the conversation progresses and linguistic phenomena such as

coreference and ellipsis happen a lot. In order to understand the question being asked, a QA

system must effectively utilize conversation history. However, most existing approaches [41]–

[43] do not effectively capture conversation history and thus have trouble handling questions

involving coreference or ellipsis.

1.2 Question Generation

1.2.1 Background

1.2.1.1 A Brief History of Question Generation

Natural question generation (QG) is the task of generating natural language questions

from a given form of data. Traditional QG mainly focused on generating factoid questions

from a single sentence or a paragraph [44]–[52]. Recent works started to explore other

forms of knowledge sources such as images [53]–[58], tables [59]–[62], and knowledge graphs

(KGs) [63]–[69]. However, early works [63]–[65], [70]–[72] on QG relied on template-based

approaches that require significant amount of human effort, and thus have low generaliz-

ability and scalability. Encouraged by the huge success of Neural Networks (NNs), recent

attempts [66]–[68], [73]–[76] have been focused on exploiting Neural Network (NN) based

approaches that do not require manually-designed rules and are end-to-end trainable. Specif-

ically, most of them formulate the QG task as a sequence-to-sequence (Seq2Seq) learning

problem [77], [78]. This Seq2Seq paradigm has proven useful in various NLP tasks such as

machine translation [77]–[79], text summarization [41], [80], [81] and dialog systems [82],

[83].

1.2.1.2 Answer-agnostic vs. Answer-aware Question Generation

Based on whether the target answer information is utilized by a QG system or not,

research on question generation can be broadly categorized into two classes: answer-agnostic

QG and answer-aware QG. Early works [64], [66], [73], [84] on QG mainly focused on the

answer-agnostic setting where an input context is given, and the goal is to generate a natural

language question that is meaningful and relevant to the input context. The limitation of

the answer-agnostic setting is that there is no control about which part of the context the

generated question is asking about. Recent works explored the answer-aware setting where

the target answer is either provided as input [69], [85]–[91] or extracted from the input

7

context by the system [67], [74], [76], [92]–[96].

1.2.1.3 Structured vs. Unstructured Knowledge Sources

The knowledge sources (i.e., context) of a QG system can either be structured or

unstructured. While it seems straightforward to apply Recurrent Neural Networks (RNNs)

or Convolutional Neural Networks (CNNs) to unstructured data such as text or images [44]–

[58], it needs more thoughtful consideration on how to model structured data such as tables

and KGs [59]–[69]. It is important to capture the structure information (e.g., relationships

among objects in the strcutured data) in order to well understand the semantic meanings of

the structured data.

1.2.2 Motivation

Natural question generation has many useful applications such as improving the ques-

tion answering task [42], [97]–[100] by providing more training data [86], [92], [94], [101]–[103],

generating practice exercises and assessments for educational purposes [71], [104], [105], and

helping dialog systems to kick-start and continue a conversation with human users [54].

1.2.3 Challenges

1.2.3.1 Context Modeling

As mentioned earlier, QG aims to generate natural language questions from certain

form of context (e.g., text, images, tables and KGs). In order to generate meaningful and

relevant questions, it is essential to well understand the context information which can be

represented in various forms. Here we would like to highlight two of the challenges regarding

context modeling.

Modeling long/large context. Most existing works on QG mainly focused on using

short/small context when generating questions. For example, existing models on QG from

text mainly focused on using short passages (i.e., one or two sentences) as the input, which

might limit the model capacity of generating complex questions requiring multi-hop reason-

ing. However, long text has posed challenges for existing QG models because i) it is usually

more challenging to model long text for RNN-based neural models, and ii) selecting useful

cues and relevant content from long text for QG is more difficult compared to short text.

Recent works [87], [95], [106], [107] started to explore QG from long text via various hierar-

8

chical and attention models. This observation also holds true for the task of QG from KGs.

Existing works on QG from KGs [66]–[68] only focused on generating simple questions from

a single triple, which is not realistic in practice. Recently, [69] proposed a Transformer [108]

based encoder-decoder model for QG from a KG subgraph.

Modeling structure information in context. Modeling structure information contained

in context is also challenging and less studied in the field of QG. For example, existing works

on QG from text [73]–[76] typically ignore the hidden structural information associated with

a word sequence such as the syntactic parsing tree. Failing to utilize the rich text structure

information beyond the simple word sequence may limit the effectiveness of these models

for QG. Similarly, existing works [66]–[68] on QG from KGs typically employ an RNN-based

encoder which cannot handle graph-structured input data.

1.2.3.2 Utilizing Answer Information

Utilizing answer information is crucial for generating high-quality questions, especially

when the input context is long or large. When question generation is guided by the semantics

of an answer, the resulting questions become more relevant and readable. Early works [73],

[84] did not take into account the answer information when generating a question. Recent

works [74], [87]–[91] have started to explore various means of utilizing the answer informa-

tion such as by simply marking the answer location in the context [74], [87], [88], or using

complex context-answer matching strategies [89], or separating answers from context when

applying an encoder-decoder model [90], [91]. However, they neglect potential semantic re-

lations between context words and answer words, and thus fail to explicitly model the global

interactions among them in the embedding space.

1.2.3.3 Training Sequence Learning Models

It has been observed that in general, cross-entropy based sequence training has several

limitations like exposure bias and inconsistency between train/test measurement [109], [110].

That is to say, in the training phase, a model has access to the ground-truth previous token

when decoding and is optimized toward cross-entropy loss, while in the testing phase, no

ground-truth previous token is provided and cross-entropy loss is not used for evaluation. As

a result, they do not always produce the best results in terms of discrete evaluation metrics

on sequence generation tasks such as text summarization [81] or question generation [89].

9

To cope with these issues, some recent QG approaches [84], [89] directly optimize evaluation

metrics using Reinforcement Learning (RL) [111]. However, existing approaches usually

only employ evaluation metrics like BLEU and ROUGE-L as rewards for RL training. More

importantly, they fail to exploit other important metrics such as syntactic and semantic

constraints for guiding high-quality text generation.

1.2.3.4 Evaluation

It is challenging to evaluate a question generation system, which is also true for any

natural language generation (NLG) system. Generally speaking, syntactically correct, se-

mantically sound, meaningful and natural questions are all useful evaluation criteria, yet

they are hard to quantify [112]. In practice, human evaluation is usually conducted by

randomly sampling a few hundred generated questions, and asking human evaluators to

rate them based on some evaluation criteria. Because human evaluation is time-consuming

and requires a lot of human effort, common automatic evaluation metrics for NLG, such as

BLEU-4 [113], METEOR [114] and ROUGE-L [115], are also widely used.

However, some studies [116], [117] have shown that these automatic metrics do not

correlate well with adequacy, fluency and coherence, as they essentially compute the n-gram

similarity between the reference sentence and the generated sentence. To overcome this in

the literature of QG evaluation, [118] proposed a new metric to evaluate the “answerability”

of a question by calculating the scores for several question-specific factors, including ques-

tion type, content words, function words, and named entities. The introduced Q-BLEU1

score was shown to correlate significantly better with human judgment compared to existing

automatic metrics. Recent works [119]–[121] proposed similarity-based evaluation metrics

by leveraging contextualized embeddings learned by large-scale pretrained language models

such as ELMO [122] and BERT [123]. These automatic metrics reportedly show a high

correlation with human judgment of text quality.

1.3 Contributions

This dissertation focuses on two different but related natural language processing prob-

lems, namely, question answering and question generation. We explore the multiple dimen-

sions (e.g., knowledge sources, reasoning complexity and conversational property) of the

question answering and generation tasks, and design novel and effective deep learning ap-

10

proaches for both tasks.

Knowledge base question answering. In Chapter 3, we describe a modular deep learning

approach to automatically answer natural language questions over a large-scale knowledge

base. Specifically, we propose to directly model the two-way flow of interactions between

the questions and the underlying KB. The proposed model is able to perform multi-hop

reasoning in a knowledge base and requires no external resources and very few hand-crafted

features. We show that our model significantly outperforms previous information retrieval

based methods while remaining competitive with handcrafted semantic parsing based meth-

ods on a popular KBQA benchmark.

Conversational machine reading comprehension. In Chapter 4, we propose a novel

graph neural network based model which is able to capture conversational flow in a dialog

when executing the task of conversational machine reading comprehension. Based on the

proposed Recurrent Graph Neural Network, we introduce a flow mechanism to model the

temporal dependencies in a sequence of context graphs which represent the conversational

history. On three public benchmarks, the proposed model shows superior performance com-

pared to existing state-of-the-art methods. In addition, visualization experiments show that

our model can offer good interpretability for the reasoning process.

Natural question generation from KGs. In Chapter 5, we apply a novel bidirectional

Graph2Seq model to encode the KG subgraph. Furthermore, we enhance our RNN decoder

with the novel node-level copying mechanism to allow directly copying node attributes from

the KG subgraph to the output question. Both automatic and human evaluation results

demonstrate that our model achieves new state-of-the-art scores, outperforming existing

methods by a significant margin on two QG benchmarks. Experiments also show that our

QG model can consistently benefit the QA task as a mean of data augmentation.

Natural question generation from text. In Chapter 6, we propose a reinforcement

learning (RL) based Graph2Seq model for QG from text. Our model consists of a Graph2Seq

generator with a novel Bidirectional Gated Graph Neural Network based encoder to embed

the passage, and a hybrid evaluator with a mixed objective combining both cross-entropy

and RL losses to ensure the generation of syntactically and semantically valid text. We also

introduce an effective Deep Alignment Network for incorporating the answer information

into the passage at both the word and contextual levels. Our model is end-to-end trainable

and achieves new state-of-the-art scores, outperforming existing methods by a significant

11

margin on the standard SQuAD benchmark.

1.4 Outline

This dissertation is structured as follows: in Chapter 2, we discuss related work on

question answering, question generation and relevant methodologies. Then we present our

novel neural network based KBQA model in Chapter 3, and the GNN based conversational

machine reading comprehension model in Chapter 4. The graph2seq based approaches for

question generation from KGs and question generation from text are introduced in Chapter 5

and Chapter 6, respectively. Finally, we conclude this dissertation and discuss potential

future directions in Chapter 7.

CHAPTER 2

RELATED WORK

2.1 Knowledge Base Question Answering

With the rapid growth in large-scale knowledge bases (KBs) such as DBPedia [11],

FreeBase [12] and Yago3 [13], knowledge base question answering (KBQA) has drawn in-

creasing attention over the past few years. Given questions in natural language (NL), the

goal of KBQA is to automatically find answers from the underlying KB, which provides a

more natural and intuitive way to access the vast underlying knowledge resources.

The approaches proposed to tackle the KBQA task can be roughly categorized into

two groups: semantic parsing (SP) and information retrieval (IR) approaches.

2.1.1 Semantic Parsing-based Approaches

SP-based approaches address the problem by constructing a semantic parser that con-

verts natural language questions into intermediate logic forms, which can be further executed

against the underlying KB. Traditional semantic parsers [124]–[126] require annotated logi-

cal forms as supervision, and are limited to narrow domains with a small number of logical

predicates. Recent efforts overcome these limitations via the construction of hand-crafted

rules or features [3], [127]–[134], schema matching [135], and using weak supervision from

external resources [3], [132], [134], [136]–[138].

Various strategies have been explored to generate semantic query graphs from NL

questions. [3] builds a coarse mapping from phrases to predicates using a KB and a large

text corpus. A bridging operation is later used to generate additional predicates based on

neighboring predicates. [128] searches partial logical forms via an agenda-based strategy that

Portions of this chapter previously appeared as: Y. Chen, L. Wu, and M. J. Zaki, “Bidirectional attentive
memory networks for question answering over knowledge bases,” in Proc. 2019 Conf. N. Amer. Chap. Assoc.
Comput. Ling.: Human Lang. Technol., vol. 1, Jun. 2-7, 2019, pp. 2913–2923.

Portions of this chapter previously appeared as: Y. Chen, L. Wu, and M. J. Zaki, “Graphflow: Exploiting
conversation flow with graph neural networks for conversational machine comprehension,” in Proc. 29th Int.
Joint Conf. Artif. Intell., Jul. 2020, pp. 1230–1236. Copyright c© 2020, IJCAI (https://www.ijcai.
org).

Portions of this chapter have been submitted to: Y. Chen, L. Wu, and M. J. Zaki, “Toward subgraph
guided knowledge graph question generation with graph neural networks,” in Proc. 2020 Conf. Empirical
Meth. Natural Lang. Process.

Portions of this chapter previously appeared as: Y. Chen, L. Wu, and M. J. Zaki, “Reinforcement
learning based graph-to-sequence model for natural question generation,” in Proc. 8th Int. Conf. Learn.
Representations, Apr. 26-30, 2020. [Online]. Available: https://openreview.net/forum?id=HygnDhEtvr

12

13

controls the order in which derivations are constructed. [134] formulates this query graph

generation problem as a staged search problem. [129] convert a dependency tree into logic

forms in three steps: binarization, substitution, and composition. To solve the ambiguity in

the conversion process, [132] pushes down the disambiguation step into the query evaluation

stage. Unlike many SP-based methods that rely on hand-crafted templates, [131] proposed

a method for automatically generating templates that map a question into a triple pattern

query over a KB. Notably, some SP-based approaches also exploit IR-based techniques [15],

[130], [133], [134], [137], [138]. [137] proposes a trainable alignment model to directly map

the natural language questions to KB relations. [133] proposes a learning-to-rank method

to improve the entity and relation matching, while still using a number of hand-crafted

templates and features. [15] maps natural language questions into logical forms via joint

relational embeddings. A Siamese convolutional neural network is used in [134] and [130] to

compute the similarity of two sequences (e.g., questions and relation paths), which is later

used as a feature along with many other hand-crafted features in a learning-to-rank algo-

rithm. [138] proposes a neural network-based answer type prediction model that improves

the performance of existing semantic parsers. Unlike previous SP-based methods, [28] pro-

poses a neural symbolic machine (NSM) for semantic parsing with weak supervision that

does not require feature engineering or domain-specific knowledge, and is trained end-to-end

via REINFORCE [111]. NSM contains a neural “programmer” that maps natural language

questions to programs and a symbolic “computer” that executes programs against a KB

and helps find good programs by pruning the search space. In general, most SP-based ap-

proaches more or less rely on a pre-defined set of rules or hand-crafted features, which limit

their scalability and transferability.

2.1.2 Information Retrieval-based Approaches

Unlike SP-based approaches that usually assume a pre-defined set of lexical triggers

or rules, which limit their domains and scalability, IR-based approaches directly retrieve

answers from the KB in light of the information conveyed in the questions. They usually

do not require hand-made rules and can therefore scale better to large KBs. Recently, deep

neural networks have been shown to produce very strong results on many NLP tasks such

as speech recognition [139], machine translation [140], and reading comprehension [141].

In the field of KBQA, under the umbrella of IR-based approaches, many embedding-based

14

methods [4], [5], [9], [10], [15]–[18], [142] have been proposed in the last few years and have

shown promising results. These methods adopt various ways to encode questions and KB

subgraphs into a common embedding space and directly match them in that space, and can

be typically trained in an end-to-end manner.

[4] was the first to apply an embedding-based approach for KBQA that mapped

questions and KB triples into the same embedding space, where a dot product is used

to find the most relevant answer. On the other hand, [5] proposes the idea of subgraph

embedding, which encodes more information (e.g., answer path and context) about the

candidate answer. In follow-up work [10], [16], memory networks [143] are used to store

candidate answers, and can be accessed iteratively to mimic multi-hop reasoning. Unlike the

above methods that mainly use a bag-of-words (BOW) representation to encode questions

and KB resources, [9], [18] apply more advanced network modules (e.g., CNNs and LSTMs)

to encode questions. Hybrid methods have also been proposed [17], [142], which achieve

improved results by leveraging additional knowledge sources such as Wikipedia free text.

While most embedding-based approaches encode questions and answers independently, [18]

proposes a cross-attention mechanism to encode questions according to various candidate

answer aspects.

2.1.3 Complex Question Answering

In this section, we discuss the recent attempts on tackling the problem of complex

question answering which typically requires an agent to perform a series of discrete symbolic

operations in order to get the answers.

Considering the many advantages of deep learning approaches, one may hope they are

highly effective for solving the problem of complex question answering. Researchers have

proposed fully neuralized QA systems for performing complex reasoning, in other words,

all of the discrete operations and reasoning results are represented by real-value vectors.

[6] proposed to realizes the execution of compositional queries as a series of differentiable

operations, with intermediate results saved in multiple layers of memory. However, they

did not explicitly parameterize the discrete operations and thus only supported litmited

operations (e.g., entry selection and aggregation). [26] presented the neural programmer-

interpreter (NPI) which is a recurrent and compositional neural network augmented with

a small set of basic arithmetic and logic operations that can be trained end-to-end with

15

weak supervision of question-answer pairs, and does not require domain-specific grammars,

rules, or annotations which are key elements in previous approaches to program induction.

The model runs for a fixed number of time steps using a recurrent neural network. At

each step, it can select a segment in the data source and a particular operation to apply

to that segment. [27] enhanced the NPI model with more built-in discrete operations and

demonstrated its effectiveness on a real-world TBQA dataset. One great advantage of these

fully neuralized approaches is that they embed everthing in a continuous vector space and

the whole system can be trained via backpropagation. However, neural networks cannot

support precise program execution and storing numerical intermediate results during the

reasoning process as vectors does not seem reliable.

In order to overcome the above limitations of fully neuralized systems, researchers have

explored many ways to combine neural networks and symbolic methods. Many of them try

to map the natural language query into a program such as SQL which can be executed by

a symbolic executor. A neural programmer is used to sample operations and associated

arguments at each step and the intermediate results are returned by a symbolic executor by

evaluating the partial program generated so far. [7] proposed a similar neural programmer.

However, fully supervised execution traces of each program are required in order to train the

model in an end-to-end manner. In order to train such a neural programmer-like model with-

out intermediate supervision, reinforcement learning [111] is often adopted. [25] proposed a

neural network for translating natural language questions to corresponding SQL queries. By

leveraging the structure of SQL queries, the proposed Seq2SQL model significantly reduces

the output space of generated queries. Moreover, they used rewards from in-the-loop query

execution over the database to learn a policy to generate unordered parts of the query. [28]

proposed a neural symbolic machine (NSM) for semantic parsing with weak supervision,

which is trained end-to-end via reinforcement learning. While directly training a model from

scratch using reinforcement learning is challenging, some approaches [25], [28] proposed to

first pretrain the models in a fully or weakly supervised manner and then continue training

using reinforcement learning. [144] developed a probabilistic deductive database, TensorLog,

where inference tasks can be compiled into sequences of differentiable operations. Inspired

by TensorLog, [30] proposed the Neural Logic Programming framework, that combines the

parameter and structure learning of first-order logical rules in an end-to-end differentiable

model.

16

2.2 Machine Reading Comprehension

2.2.1 Traditional Machine Reading Comprehension

The goal of machine reading comprehension (MRC) is to answer a natural language

question using the given passage. Recently, impressive progress has been made in the MRC

task [8], [141], [145]–[148], with most methods relying on (co-)attention mechanisms that

capture the interaction between the question and its context. [145] proposed an attention

based recurrent neural network framework which consists of two novel components: an at-

tentive reader which focuses on the passages of a context document which are most likely to

answer the query and an impatient reader which rereads from the document as each query

token is read. [146] presented a simple but effective model called attention-over-attention

reader which induces “attended attention” for answer predictions by placing another atten-

tion mechanism over the document-level attention. [8] proposed a multi-stage hierarchical

process that represents the context at different levels of granularity and uses a bi-directional

attention flow mechanism to achieve a query-aware context representation without early

summarization. [147] proposed the Dynamic Coattention Network which fuses co-dependent

representations of the question and the document in order to focus on relevant parts of

both. [141] developed an extraction-then-synthesis framework to synthesize answers from

extraction results which could be able to handle the cases where the answer is not an ex-

act text span in a passage. [148] proposed a multi-factor attentive encoding that aggregates

meaningful facts even when they are located in multiple sentences.

2.2.2 Conversational Machine Reading Comprehension

Recent years have observed a surge of interest in conversational machine reading com-

prehension (MRC). Unlike the traditional setting of MRC that requires answering a single

question given a passage (aka context), the conversational MRC task is to answer the cur-

rent question in a conversation given a passage and the previous questions and answers.

The goal of this task is to mimic real-world situations where humans seek information in a

conversational manner.

Despite the success existing works have achieved on traditional MRC (e.g., SQuAD

[149]), conversational MRC has proven significantly more challenging when the conversations

are incorporated into the MRC task. It has been observed that in those human-to-human

conversations [37], [38], the starting turns tend to focus on the beginning chunks of the

17

passage and as the conversation progresses, the focus shifts to the later chunks. Moreover,

the turn transitions are usually smooth, with the focus often remaining in the same chunk or

moving to a neighboring chunk. Lastly, many questions refer back to the conversation history

via either coreference or ellipsis. Therefore, one hopes to develop a model that can capture

these shifts of focus during a conversation. We model conversation flow as a sequence of

latent states in the dialog and learn important latent states associated with these shifts of

focus.

To cope with the above challenges, many methods have been proposed to effectively

utilize conversation history, including previous questions and/or previous answers. Most

existing approaches, however, simply prepend the conversation history to the current ques-

tion [37], [150] or add previous answer locations to the passage [38], [43], and treat the

task as a single-turn MRC while ignoring the important information from the conversation

flow. [151] assumed that the hidden representations generated during the previous reasoning

processes potentially capture important information for answering the previous questions,

and thus provide additional clues for answering the current question. They proposed an

Integration-Flow (IF) mechanism to first sequentially process the passages, in parallel to the

question turns, and then to sequentially process the question turns, in parallel to passage

words. Their FlowQA model achieves strong empirical results on two benchmarks (i.e.,

CoQA and QuAC) [37], [38].

However, the IF mechanism is not quite natural since it does not mimic how humans

perform reasoning. This is because when humans execute such task, they typically do not

first perform reasoning in parallel for each question, and then refine the reasoning results

across different turns. This may partially explain why this strategy is inefficient because

the results of previous reasoning processes are not incorporated into the current reasoning

process. As a result, the reasoning performance at each turn is only slightly improved by

the hidden states of the previous reasoning process, even though they use stacked IF layers

to try to address this problem.

2.3 Natural Question Generation from Knowledge Graphs

Recent years have seen a surge of interests in Question Generation (QG) in machine

learning and natural language processing. The goal of QG is to generate a natural language

(NL) question for a given form of data such as text [73], [75], [152], [153], images [53]–[58],

18

tables [59]–[62], and knowledge graphs (KGs) [63]–[69].

KGs have drawn a large amount of research attention in recent years, partially due

to their huge potential for an accessible, natural way of retrieving information without a

need for learning complex query languages such as SPARQL. In order to train a large KB

question answering (QA) system, a large number of QA pairs are often needed, which can

be a severe bottleneck in practice. Developing effective approaches to generate high-quality

QA pairs from KGs can significantly address the data scarcity issue for KBQA.

Early works [63]–[65] on QG from KGs mainly focused on template-based approaches

that require significant amount of human effort, and have low generalizability and scalability.

Recently, Seq2Seq [77], [78] based neural architectures have been applied to this task with-

out resort to manually-designed templates and are end-to-end trainable. However, these

methods [66]–[68] only focus on generating simple questions from a single triple as they

typically employ an RNN-based encoder which cannot handle graph-structured data. Very

recently, [69] presented a Transformer [108] based encoder-decoder model that allows to en-

code a KG subgraph and generate multi-hop questions. This is probably the first NN-based

method that deals with QG from a KG subgraph instead of just a single triple. However,

their method treats a KG subgraph as a set of triples, which does not distinguish between

entities and relations while modeling the graph, and also does not utilize explicit connections

among triples.

In summary, existing approaches for QG from KGs suffer from several limitations; they

i) mostly focus on a simple setting which is to generate questions from a single KG triple,

and ii) they build on either RNN-based or Transformer-based models to encode a linearized

KG sugraph, which totally discards the explicit structure information of a KG subgraph.

2.4 Natural Question Generation from Text

Conventional methods [70]–[72] for QG from text rely on heuristic rules or hand-crafted

templates, leading to the issues of low generalizability and scalability. Recent attempts have

focused on NN-based approaches that do not require manually-designed rules and are end-

to-end trainable. Specifically, attention-based Seq2Seq models [79], [140] and their enhanced

versions with copy [154], [155] and coverage [156] mechanisms have been widely applied and

show promising results on this task [73]–[76]. However, these methods typically ignore the

hidden structural information associated with a word sequence such as the syntactic parsing

19

tree. Failing to utilize the rich text structure information beyond the simple word sequence

may limit the effectiveness of these models for QG.

In addition, various ways [74], [87], [89] have been proposed to utilize the target answer

for guiding the question generation. [74] marked answer positions when encoding the input

passage. [75] proposed a multi-perspective matching strategy to match the answer with the

passage. [90] proposed an answer-separated Seq2Seq model which treats the passage and

the answer separately. [88] proposed a multi-task learning framework to guide the model

to learn the accurate boundaries between copying and generation. However, these methods

neglect potential semantic relations between passage words and answer words, and thus fail

to explicitly model the global interactions among them in the embedding space.

It has been observed that in general, cross-entropy based sequence training has sev-

eral limitations like exposure bias and inconsistency between train/test measurement [109],

[110]. To address the limitations of cross-entropy based sequence learning, some recent ap-

proaches [84], [89] aim at directly optimizing evaluation metrics using REINFORCE. [84],

[89] augmented an RNN-based generator with an evaluator which evaluates and assigns a re-

ward to each predicted question. Concurrent works have explored tackling the QG task with

various semantics-enhanced rewards [101] or large-scale pretrained language models [157].

In summary, existing approaches for QG from text suffer from several limitations; they

i) ignore the rich structure information hidden in text, ii) solely rely on cross-entropy loss

that leads to issues like exposure bias and inconsistency between train/test measurement,

and iii) fail to fully exploit the answer information.

2.5 Modern Deep Learning and Reinforcement Learning Methods

Deep Learning (DL) [158], [159] is a class of machine learning algorithms that use

multi-layer neural networks to progressively extract higher level features from the raw input

in an end-to-end manner. These methods have dramatically improved the state-of-the-

art in CV [160], speech recognition [161], NLP [123], [162] and many other domains such

as healthcare [99], drug discovery [163], finance [164], genomics [165], and software [166].

Reinforcement learning (RL) [167], [168] is an area of machine learning concerned with how

agents should take actions in an environment in order to maximize the cumulative reward.

Recent years have seen very successful applications of RL in games, robotics, computer

vision, NLP and many other domains such as healthcare. In this section, we will introduce

20

some relevant background knowledge on deep learning and reinforcement learning.

2.5.1 Recurrent Neural Networks

Recurrent neural networks (RNN) [169] is a classical family of neural networks where

connections between nodes form a directed graph to exploit temporal information in sequen-

tial data. Basically, RNNs perform the same task for every element of a sequence, with the

output being dependent on the computational results at the previous time step. RNNs are

characterized by their internal memory, or hidden layer, defined by the recurrence relation:

ht = fh(Whhht−1 + Wxhxt + bh) (2.1)

where Whh and Wxh are both weight matrices, and bh is a weight vector. xt and ht are the

input vector and the hidden state at the t-th time step, respectively. fh(·) is an element-

wise non-linear activation function, and h(0) is an additional model parameter indicating the

initial hidden state. The output vector can be further computed by

yt = fy(Wyht + by) (2.2)

where Wy is a weight matrix, and by is a weight vector. yt is the output vector at the t-th

time step, and fy(·) is an element-wise non-linear activation function.

RNNs incorporate an internal memory ht that can, in principle, summarize the entire

sequence history, which makes them well suited to capture long-term dependencies. How-

ever, studies have showed that it is challenging to train RNNs efficiently by gradient-based

optimization because of the the gradient vanishing/explosion problem for long sequences of

inputs [170], [171].

Long Short-Term Memory (LSTM) [172] network is a type of RNN which is good at

capturing long-range context dependences over input sequences. Similar to regular RNNs,

LSTM uses a sequence of memory cells to store and memorize historical information. The

major difference is that each memory cell of LSTM contains three gates (input gate, forget

gate, and output gate) to control the information flow from the previous time step to the

current time step. The introduced gating mechanism enables LSTM to alleviate the gradient

vanishing/explosion problem for long sequences of inputs.

Given an input sequence of vectors X = (x1, ...,xT), an LSTM network outputs a

21

Fig. 2.1: Architecture of the Long Short-Term Memory (LSTM) network. The
picture is from

https://commons.wikimedia.org/wiki/File:The LSTM cell.png,
licensed under version 4.0 of the Creative Commons CC-BY license

(CC BY 4.0).

sequence of hidden states H = (h1, ...,hT). A memory cell at the t-th time step digests the

input vector xt and the previous hidden state ht−1 to produce the current hidden state ht

as follows:

ft = σ(Wf [ht−1,xt] + bf) (2.3a)

it = σ(Wi[ht−1,xt] + bi) (2.3b)

C̃t = tanh(WC [ht−1,xt] + bC) (2.3c)

Ct = ft �Ct−1 + it � C̃t (2.3d)

ot = σ(Wo[ht−1,xt] + bo) (2.3e)

ht = ot � tanh(Ct) (2.3f)

where W terms are weight matrices, b terms are bias vectors, and σ and tanh are non-

linear activation functions. Ct and ht are the cell state and hidden state at the current time

step, respectively. ft, it and ot are forget gate (i.e., deciding how much information to forget

from the previous cell state Ct−1), input gate (i.e., deciding how much information to keep

from the new candidate vector C̃t) and output gate (i.e., deciding how much information to

22

output), respectively.

Due to the huge success of LSTM networks on modeling sequential data [77], [161],

many RNN variants [78], [173]–[175] have been proposed with the same spirit of the gat-

ing mechanism used in LSTM. Besides LSTM, another popular RNN variant is the Gated

Recurrent Unit (GRU) [78]. GRU makes two major changes to LSTM in order to simplify

LSTM while reserving its expressive power. Compared to LSTM, GRU combines the forget

and input gates into a single “update gate”, and merges the cell state and hidden state.

The resulting model is simpler than standard LSTM models, and has achieved comparative

or even better results on various tasks. A few comparative studies [176], [177] have been

conducted to systematically compare different RNN variants across various tasks.

A natural extension to RNN/LSTM is to model the sequence from both positive time

direction and negative time direction, which is proposed as bidirectional RNN [178].

RNNs have many applications in sequence modeling tasks, such as speech recogni-

tion [161], [179], [180], hand writing recognition [181], machine translation [77], [78], question

generation [73], [75], text summarization [41], [80], [81] and dialog systems [82], [83].

2.5.2 Attention Mechanisms

Attention mechanisms help neural networks focus on important parts of the features.

The idea of attention mechanisms was first introduced in the literature of machine translation

by [140]. Before attention mechanisms, neural machine translation approaches typically

encoded a complete sentence into a fixed-length vector, and generated the target sentence

solely based on the compressed information. As one can imagine, a sentence with hundreds

of words represented by a fixed-length vector will surely lead to information loss and thus

inadequate translation. Attention mechanisms partially fix this issue by allowing the machine

translator to look over all the information contained in the source sentence, and then at

decoding time to generate the next word according to the current word and the context.

The context is essentially the weighted sum of word vectors in the source sentence where

the weights come from an attention mechanism. Thereafter, attention mechanisms have

found broad application in all kinds of NLP tasks including question answering [8], [18], [97],

[145]–[147], [182]–[184].

Many variants of attention mechanisms have been proposed. Here we just introduce

some widely used variants.

23

Additive attention

ei = vT tanh(W[x,hi]) (2.4)

where W and v are d× 2d and d-dimensional trainable weights, respectively.

Multiplicative attention

ei = xWhi (2.5)

where W is a d× d trainable weight matrix.

Multiplicative attention version 2

ei = ReLU(Wx)TReLU(Whi) (2.6)

where W is a d× d trainable weight matrix.

2.5.3 Memory Networks

Memory networks are neural networks equipped with a long-term memory component

that can be read and written to. It was first introduced by [143] in the context of question

answering where the long-term memory acts as a dynamic knowledge base. In memory

networks, the input and response languages as well as the storage languages (here, the

facts from KBs) are embedded in the same vector space. The memory networks maintain

an internal state vector which can be used to access the memory component typically via

an attention mechanism, and the information read from the memory component can be

used to update the internal state vector. This kind of read-and-update operation is called

one-hop reasoning. Memory networks can benefit from performing multi-hop reasoning in

practice. [185] extended the basic memory networks to key-value memory networks as shown

in Fig. 2.2. Unlike a basic memory network, in a key-value memory network, the addressing

stage is based on the key memory while the reading stage uses the value memory, which gives

greater flexibility to encode prior knowledge via functionality separation. Memory networks

have shown promising results in KBQA [6], [10], [16], [186], reading comprehension [185] and

dialog systems [187].

Notably, most neural programmer-like models we discussed in Section 2.1.3 adopt the

architecture of memory networks. They often equip a learnable memory component which

24

stores the vector representations of predefined symbolic operations. The operation sampling

process is done by reading relevant memory slots from the memory bank into a controller

via some attention mechanism.

Fig. 2.2: A Key-Value Memory Network for question answering. The picture is
from [185], licensed under version 4.0 of the Creative Commons

CC-BY license (CC BY 4.0).

2.5.4 Graph Neural Networks

Graph embedding approaches aim at learning meaningful graph node embeddings

and/or graph embeddings which preserve network properties. Previous graph embedding

approaches such as DeepWalk [188], node2vec [189], LINE [190], TADW [191] share no pa-

rameters between nodes in the encoder, hence the number of parameters grows linearly with

the number of nodes. And those direct embedding methods lack the ability of generalization,

which means they cannot deal with dynamic graphs or generalize to new graphs.

Over the past few years, graph neural networks (GNNs) [192]–[199] have drawn in-

creasing attention since they extend traditional Deep Learning approaches to non-euclidean

data such as graph-structured data. [192] proposed the first graph neural network model

that extends existing neural network methods for processing the data represented in the

graph domain. Early works [200]–[203] on GNNs aimed to generalize the convolution oper-

ation in the Fourier domain to the graph domain via spectral analysis. [193] proposed the

Graph Convolutional Network (GCN) which simplifies spectral convolutions on graphs by

restricting the filters to operate in a 1-hop neighborhood around each node. [197] proposed

the Gated Graph Sequence Neural Networks (GGSNN) by employing the Gated Recurrent

Unit (GRU) [78] in GNNs. [196] introduced GraphSAGE, a general inductive framework

25

that allows node embeddings to be efficiently generated for unseen nodes. [204] applied the

idea of multi-head attention [108] to GNNs and proposed the Graph Attention Network

(GAT) which can learn different weights to different neighboring nodes when performing

node aggregation. [205] proposed Gated Attention Networks (GaAN) which enhances the

GAT by using a convolutional sub-network to control the importance of different attention

heads. [199] presented a unified GNN framework which decomposes the GNN computation

into the edge update stage, the node update stage and the global update stage. As shown

in Fig. 2.3, given the node feature vectors and the adjacency matrix, GNNs can update all

the node embeddings in parallel by incorporating information from neighboring nodes and/or

edges. Once the node embeddings are learned, graph-level embeddings can be obtained by

applying graph pooling techniques to the node embeddings such as average pooling, max

pooling, DiffPool [206] and gPool [207].

While the most straightforward applications of GNNs are tasks such as node classi-

fication, link prediction and graph classification, considering the fact that GNNs are good

at modeling relations among elements, they have many successful applications in computer

vision [208]–[211], recommender systems [212]–[216], and drug discovery [163], [217]–[222].

GNNs also have broad applications in NLP such as text classification [223], KBQA [224],

MRC [225]–[227], dialog systems [228], [229], machine translation [230], [231], semantic pars-

ing [232], and graph-to-text generation (e.g., AMR, SQL and KG to text) [198], [227], [233]–

[237].

For tasks where the graph structure is unknown, [225], [226], [232] construct a static

graph where entity mentions in a passage are nodes of this graph and edge information is

determined by coreferences of entity mentions. [209] dynamically construct a graph which

contains all the visual objects appearing in an image. [238], [239] dynamically constructs a

graph of all words from free text. [240] proposed the LDS model for jointly learning the graph

and the parameters of GNNs by leveraging the bilevel optimization technique. [239] proposed

an iterative deep graph learning (IDGL) framework for jointly and iteratively learning the

graph structure and graph embedding that are optimized toward the downstream prediction

tasks.

26

Fig. 2.3: Computation steps in a graph neural network block.

2.5.5 Reinforcement Learning

Reinforcement learning (RL) [167], [168] is an area of machine learning concerned

with how agents should take actions in an environment in order to maximize the notion of

cumulative reward. RL differs from supervised learning in requiring no labeled input/output

pairs be presented, and no sub-optimal actions to be explicitly corrected.

Fig. 2.4: The agent–environment interaction in reinforcement learning. The
picture is from [168], licensed under

Attribution-NonCommercial-NoDerivs 2.0 Generic license (CC
BY-NC-ND 2.0).

Basic RL is modeled as a Markov decision process [241]:

• a set of environment and agent states, S;

• a set of actions (A) of the agents;

• Pa(s, s
′) = Pr(st+1 = s′|st = s, at = a) is the probability of transition (at time t) from

state s to state s′ under action a;

27

• Ra(s, s
′) is the immediate reward after transition from s to s′ with action a;

• rules that describe what the agent observes.

A reinforcement learning agent interacts with its environment in discrete time steps.

At each time t, based on the observation ot and the associated reward rt, the agent chooses

an action at from the set of available actions, which is subsequently sent to the environment.

In order to build an optimal policy, the agent faces the dilemma of exploring new states

while maximizing its reward at the same time. This is called Exploration vs Exploitation

trade-off [242]. Deep reinforcement learning [243], [244] extends reinforcement learning by

using a deep neural network and without explicitly designing the state space. Researchers

have developed many model-free RL algorithms such as Q-learning [245], SARSA (State-

Action-Reward-State-Action) [246], DQN [247] and DDPG (Deep Deterministic Policy Gra-

dient) [248]. RL has been widely applied in many fields such as games [247], [249]–[253],

robotics [254]–[256], NLP [257]–[259], computer vision [260]–[262] and healthcare [263]–[267].

CHAPTER 3

KNOWLEDGE BASE QUESTION ANSWERING

3.1 Overview

When answering natural language questions over knowledge bases (KB), different ques-

tion components and KB aspects play different roles. However, most existing embedding-

based methods for knowledge base question answering (KBQA) ignore the subtle inter-

relationships between the question and the KB (e.g., entity types, relation paths and con-

text). In this work, we propose to directly model the two-way flow of interactions between

the questions and the underlying KB via a novel Bidirectional Attentive Memory network,

called BAMnet. We assume that the world knowledge (i.e., the KB) is helpful for better

understanding the questions. Similarly, the questions themselves can help us focus on im-

portant KB aspects. To this end, we design a two-layered bidirectional attention network.

The primary attention network is intended to focus on important parts of a question in light

of the KB and important KB aspects in light of the question. Built on top of that, the

secondary attention network is intended to enhance the question and KB representations by

further exploiting the two-way attentions. Specifically, we start by computing a question

summary using a self-attention mechanism that captures its semantic meaning without con-

sidering the KB. Based on the question summary, a KB summary is then computed, which

summarizes the KB knowledge relevant to answering the question. Given the KB summary,

we are able to pay different levels of attention to different parts of the question, yielding

a KB-aware representation for the question. Similarly, we learn a question-aware represen-

tation for the KB. Later, the representations of the question and KB are further enhanced

to better capture the interactions between them. Through this idea of hierarchical two-way

attentions, we are able to distill the information that is the most relevant to answering the

questions on both sides of the question and KB.

We highlight the contributions of this work as follows:

• We propose a novel bidirectional attentive memory network which is intended to di-

rectly model the two-way interactions between questions and the KB for the task of

This chapter previously appeared as: Y. Chen, L. Wu, and M. J. Zaki, “Bidirectional attentive memory
networks for question answering over knowledge bases,” in Proc. 2019 Conf. N. Amer. Chap. Assoc.
Comput. Ling.: Human Lang. Technol., vol. 1, Jun. 2-7, 2019, pp. 2913–2923.

28

29

KBQA.

• On the WebQuestions benchmark, our method significantly outperforms previous IR-

based methods while remaining competitive with (hand-crafted) SP-based methods.

• By design, our method offers good interpretability thanks to the attention mechanisms.

3.2 Approach: BAMnet

Fig. 3.1: Overall architecture of the BAMnet model.

Given an NL question, the goal is to fetch answers from the underlying KB. Our

proposed BAMnet model consists of four components which are the input module, memory

module, reasoning module and answer module, as shown in Fig. 3.1.

3.2.1 Input Module

An input NL question Q = {qi}|Q|i=1 is represented as a sequence of word embeddings

(qi) by applying a word embedding layer. We then use a bidirectional LSTM [172] to encode

the question as HQ (in Rd×|Q|) which is the sequence of hidden states (i.e., the concatenation

of forward and backward hidden states) generated by the BiLSTM.

3.2.2 Memory Module

Candidate generation. Even though all the entities from the KB could in principle be

candidate answers, this is computationally expensive and unnecessary in practice. We only

consider those entities which are “close” to the main topic entity of a question. An answer is

30

the text description (e.g., a name) of an entity node. For example, Ohio is the topic entity

of the question “Who was the secretary of state of Ohio in 2011?” (see Fig. 3.2). After

getting the topic entity, we collect all the entities connected to it within h hops as candidate

answers, which we denote as {Ai}|A|i=1.

Fig. 3.2: A working example from Freebase. Relations in Freebase have
hierarchies where high-level ones provide too broad or even noisy
information about the relation. Thus, we choose to use the lowest

level one.

KB representation. For each candidate answer from the KB, we encode three types of

information: answer type, path and context.

Answer type Entity type information is an important clue in ranking answers. For

example, if a question uses the interrogative word where, then candidate answers with types

relevant to the concept of location are more likely to be correct. We use a BiLSTM to encode

its text description to get a d-dimensional vector Ht1
i (i.e., the concatenation of last forward

and backward hidden states).

Answer path. We define an answer path as a sequence of relations from a candidate

answer to a topic entity. For example, for the Ohio question (see Fig. 3.2), the answer path of

Jon A. Husted can be either represented as a sequence of relation ids [office holder, governing

officials] or the text description [office, holder, governing, officials]. We thus encode an

answer path as Hp1
i via a BiLSTM, and as Hp2

i by computing the average of its relation

embeddings via a relation embedding layer.

Answer context. The answer context is defined as the surrounding entities (e.g., sib-

31

ling nodes) of a candidate which can help answer questions with constraints. For example,

in Fig. 3.2, the answer context of Jon A. Husted includes the government position title

secretary of state and starting date 2011-01-09. However, for simple questions without con-

straints, the answer context is unnecessary and can potentially incorporate noise. We tackle

this issue with two strategies: 1) we use a novel importance module (explained later) to

focus on important answer aspects, and 2) we only consider those context nodes that have

overlap with the question. Specifically, for each context node (i.e., a sequence of words) of a

candidate, we first compute the longest common subsequence between it and the question,

we then encode it via a BiLSTM only if we get a non-stopwords substring. Finally, the

answer context of a candidate answer will be encoded as the average of all context node

representations, which we denote as Hc
i .

Key-value memory module. In our model, we use a key-value memory network [185] to

store candidate answers. Unlike a basic memory network [143], its addressing stage is based

on the key memory while the reading stage uses the value memory, which gives greater

flexibility to encode prior knowledge via functionality separation. Thus, after encoding the

answer type, path and context, we apply linear projections on them as follows:

Mkt
i = fk

t (Ht1
i) Mvt

i = f v
t (Ht1

i) (3.1a)

M
kp
i = fk

p ([Hp1
i ; Hp2

i]) M
vp
i = f v

p ([Hp1
i ; Hp2

i]) (3.1b)

Mkc
i = fk

c (Hc
i) Mvc

i = f v
c (Hc

i) (3.1c)

where Mkt
i and Mvt

i are d-dimensional key and value representations of answer type At
i,

respectively. Similarly, we have key and value representations for answer path and answer

context. We denote M as a key-value memory whose row Mi = {Mk
i ,M

v
i } (both in Rd×3),

where Mk
i = [Mkt

i ; M
kp
i ; Mkc

i] comprises the keys, and Mv
i = [Mvt

i ; M
vp
i ; Mvc

i] comprises the

values. Here [,] and [;] denote row-wise and column-wise concatenations, respectively.

3.2.3 Reasoning Module

The reasoning module consists of a generalization module, and our novel two-layered

bidirectional attention network which aims at capturing the two-way interactions between

questions and the KB. The primary attention network contains the KB-aware attention

module which focuses on the important parts of a question in light of the KB, and the

32

importance module which focuses on the important KB aspects in light of the question.

The secondary attention network (enhancing module in Fig. 3.1) is intended to enhance the

question and KB vectors by further exploiting the two-way attention.

Fig. 3.3: KB-aware attention module. CAT: concatenation, SelfAtt:
self-attention, AddAtt: additive attention.

KB-aware attention module. Not all words in a question are created equal. We use a

KB-aware attention mechanism to focus on important components of a question, as shown

in Fig. 3.3. Specifically, we first apply self-attention (SelfAtt) over all question word vectors

HQ to get a d-dimensional question vector q as follows

q = BiLSTM([HQAQQT
,HQ]) (3.2a)

AQQ = softmax((HQ)THQ) (3.2b)

where softmax is applied over the last dimension of an input tensor by default. Here AQQ

computes the attention strengths among all words in a question, and concatenating HQ and

HQAQQT
fuses word information with information from surrounding words, which is later

fed into a BiLSTM to get a self-attentive question representation. Using question summary

q, we apply another attention (AddAtt) over the memory to obtain answer type mt, path

33

mp and context summary mc:

mx =

|A|∑
i=1

axi ·Mvx
i (3.3a)

ax = Attadd(q,Mkx) (3.3b)

where x ∈ {t, p, c}, and Attadd(x,y) = softmax(tanh([xT ,y]W1)W2), with W1 ∈ R2d×d and

W2 ∈ Rd×1 being trainable weights.

So far, we have obtained the KB summary m = [mt; mp; mc] in light of the question.

We proceed to compute the question-to-KB attention between question word qi and KB

aspects as formulated by AQm = HQT
m. By applying max pooling over the last dimension

(i.e., the KB aspect dimension) of AQm, that is, aQ
i = maxj AQm

ij , we select the strongest

connection between qi and the KB. The idea behind it is that each word in a question serves

a specific purpose (i.e., indicating answer type, path or context), and max pooling can help

find out that purpose. We then apply a softmax over the resulting vector to obtain ãQ which

is a KB-aware question attention vector since it indicates the importance of qi in light of the

KB.

Importance module. The importance module focuses on important KB aspects as mea-

sured by their relevance to the questions. We start by computing a |Q| × |A| × 3 attention

tensor AQM which indicates the strength of connection between each pair of {qi, Ax
j }x={t,p,c}.

Then, we take the max of the question word dimension of AQM and normalize it to get an

attention matrix ÃM , which indicates the importance of each answer aspect for each can-

didate answer. After that, we proceed to compute question-aware memory representations

M̃k. Thus, we have:

M̃v = {M̃v
i }
|A|
i=1 ∈ R|A|×d M̃v

i =
3∑

j=1

Mv
ij (3.4a)

M̃k = {M̃k
i }
|A|
i=1 ∈ R|A|×d M̃k

i = ÃM
i Mk

i (3.4b)

ÃM = softmax(AMT
)T AM = max

i
{AQM

i }|Q|i=1 AQM =
(
MkHQ

)T
(3.4c)

Enhancing module. We further enhance the question and KB representations by exploiting

two-way attention. We compute the KB-enhanced question representation q̃ which incorpo-

34

rates the relevant KB information by applying max pooling over the last dimension (i.e., the

answer aspect dimension) of AQM , that is, AQ
M = maxk{AQM

.,.,k }3k=1, and then normalizing it

to get a question-to-KB attention matrix ÃQ
M from which we compute the question-aware KB

summary and incorporate it into the question representation H̃Q = HQ + ãQ � (ÃQ
MM̃v)

T
.

Finally, we obtain a d-dimensional KB-enhanced question representation q̃ = H̃QãQ.

Similarly, we compute a question-enhanced KB representation M
k

which incorporates

the relevant question information:

M
k

= M̃k + ãM � (ÃM
Q (H̃Q)T) (3.5a)

ãM = (ÃQ
M)T ãQ ∈ R|A|×1 (3.5b)

ÃM
Q = softmax(AQ

M

T
) ∈ R|A|×|Q| (3.5c)

Generalization module. We add a one-hop attention process before answering. We use the

question representation q̃ to query over the key memory M
k

via an attention mechanism, and

fetch the most relevant information from the value memory, which is then used to update the

question vector using a GRU [78]. Finally, we apply a residual layer [160] (i.e., y = f(x)+x)

and batch normalization (BN) [268], which help the model performance in practice. Thus,

we have

q̂ = BN(q̃ + q′) (3.6a)

q′ = GRU(q̃, m̃) (3.6b)

m̃ =

|A|∑
i=1

ai · M̃v
i (3.6c)

a = AttGRU
add (q̃,M

k
) (3.6d)

3.2.4 Answer Module

Given the representation of question Q which is q̂ and the representation of candidate

answers {Ai}|A|i=1 which is {Mk

i }
|A|
i=1, we compute the matching score S(q̂,M

k

i) between every

pair (Q,Ai) as

S(q, a) = qT · a (3.7)

35

which basically computes the dot product between the two input vectors. The candidate

answers are then ranked by their matching scores.

3.2.5 Training and Testing

Training. Intermediate modules such as the enhancing module generate “premature” rep-

resentations of questions (e.g., q̃) and candidate answers (e.g., M
k
). Even though these

intermediate representations are not optimal for answer prediction, we can still use them

along with the final representations to jointly train the model, which we find helps the

training probably by providing more supervision since we are directly forcing intermediate

representations to be helpful for prediction. Moreover, we directly match interrogative words

to KB answer types. A question Q is represented by a 16-dimensional interrogative word

(we use “which”, “what”, “who”, “whose”, “whom”, “where”, “when”, “how”, “why” and

“whether”) embedding qw and a candidate answer Ai is represented by entity type embed-

ding Ht2
i with the same size. We then compute the matching score S(qw,Ht2

i) between

them. Although we only have weak labels (e.g., incorrect answers do not necessarily imply

incorrect types) for the type matching task, and there are no shared representations between

two tasks, we find in practice this strategy helps the training process.

Loss function. In the training phase, we force positive candidates to have higher scores than

negative candidates by using a triplet-based loss function:

o = g(HQãQ,
3∑

j=1

Mk
.,j) + g(q̃,M

k
) + g(q̂,M

k
) + g(qw,Ht2) (3.8)

where g(q,M) =
∑

a+∈A+

a−∈A−
`(S(q,Ma+), S(q,Ma−)), and `(y, ŷ) = max(0, 1+ ŷ−y) is a hinge

loss function, and A+ and A− denote the positive (i.e., correct) and negative (i.e., incorrect)

answer sets, respectively. Note that at training time, the candidate answers are extracted

from the KB subgraph of the gold-standard topic entity, with the memory size set to Nmax.

We adopt the following sampling strategy which works well in practice: if Nmax is larger than

the number of positive answers |A+|, we keep all the positive answers and randomly select

negative answers to fill up the memory; otherwise, we randomly select min(Nmax/2, |A−|)
negative answers and fill up the remaining memory with random positive answers.

Testing. At testing time, we need to first find the topic entity. We do this by using the

36

top result returned by a separately trained topic entity predictor (we also compare with the

result returned by the Freebase Search API). Then, the answer module returns the candidate

answer with the highest scores as predicted answers. Since there can be multiple answers to

a given question, the candidates whose scores are close to the highest score within a certain

margin, θ, are regarded as good answers as well. Therefore, we formulate the inference

process as follows:

Â = {â | â ∈ A & max
a′∈A
{S(q̂,M

k
a′)} − S(q̂,M

k
â) < θ} (3.9)

where maxa′∈A{S(q̂,M
k

a′)} is the score of the best matched answer and Â is the predicted an-

swer set. Note that θ is a hyper-parameter which controls the degree of tolerance. Decreasing

the value of θ makes the model become stricter when predicting answers.

3.2.6 Topic Entity Prediction

Given a question Q, the goal of a topic entity predictor is to find the best topic entity

ĉ from the candidate set {Ci}|C|i=1 returned by external topic entity linking tools (we use

the Freebase Search API and S-MART [269] in our experiments). We use a convolutional

network (CNN) to encode Q into a d-dimensional vector e. For candidate topic entity Ci,

we encode three types of KB aspects, namely, the entity name, entity type and surrounding

relations where both entity name and type are represented as a sequence of words while

surrounding relations are represented as a bag of sequences of words. Specifically, we use

three CNNs to encode them into three d-dimensional vectors, namely, Cn
i , Ct

i and Cr1
i . Note

that for surrounding relations, we first encode each of the relations and then compute their

average. Additionally, we compute an average of the relation embeddings via a relation

embedding layer which we denote as Cr2
i . We then apply linear projections on the above

vectors as follows:

Pk
i = fk([Cn

i ; Ct
i; C

r1
i ; Cr2

i]) (3.10a)

Pv
i = f v([Cn

i ; Ct
i; C

r1
i ; Cr2

i]) (3.10b)

where Pk
i and Pv

i are d-dimensional key and value representations of candidate Ci, respec-

tively. Furthermore, we compute the updated question vector ê using the generalization

module mentioned earlier. Next, we use a dot product to compute the similarity score be-

tween Q and Ci. A triplet-based loss function is used as formulated by o = g(e,Pk
i)+g(ê,Pk

i)

37

where g(.) is the aforementioned hinge loss function. When training the predictor, along with

the candidates returned from external entity linking tools, we do negative sampling (using

string matching) to get more supervision. In the testing phase, the candidate with the

highest score is returned as the best topic entity and no negative sampling is applied.

3.3 Experiments

This section provides an extensive evaluation of our proposed BAMnet model against

state-of-the-art KBQA methods. The implementation of BAMnet is available at https://

github.com/hugochan/BAMnet.

3.3.1 Baseline Methods

The baseline methods in our experiments include semantic parsing based methods

([3], [137] [270], [133], [128], [134], [129], [138], [130], [142], [271], [131], [132]) and information

retrieval based methods ([5], [15], [9], [16], [17] and [18]).

3.3.2 Data and Metrics

We use the Freebase KB and the WebQuestions dataset, described below:

Freebase. This is a large-scale KB [12] that consists of general facts organized as subject-

property-object triples. It has 41M non-numeric entities, 19K properties, and 596M asser-

tions. In FreeBase, k-ary relations for k > 2 can be represented by a special entity (one for

each k-tuple in the relation) and k− 1 binary relations (e.g., Fig. 3.2 shows an example of a

4-ary relation where the three binary relations are all connected to a dummy entity which is

connected to the topic node Ohio). In our experiments, we do not include the dummy nodes

into a candidate answer set. We also preprocess Freebase by removing predicates (e.g., those

starting with “/common/”, “/freebase”, etc.) which are not related to world knowledge.

WebQuestions. This dataset [3] (nlp.stanford.edu/software/sempre) contains

3,778 training examples and 2,032 test examples. We further split the training instances into

a training set and development set via a 80%/20% split. Each example contains three fields:

the NL question, the answer list provided by Amazon Mechanical Turk (AMT) workers

and the FreeBase URL page for the answers, which refers to the “gold” topic entity of the

question. Approximately 85% of questions can be directly answered via a single FreeBase

predicate. Also, each question can have multiple answers. In our experiments, we use a

38

development version of the dataset [272], which additionally provides (potentially noisy)

entity mentions for each question.

Following [3], macro F1 scores (i.e., the average of F1 scores over all questions) are

reported on the WebQuestions test set.

3.3.3 Model Settings

When constructing the vocabularies of words, entity types or relation types, we only

consider those questions and their corresponding KB subgraphs appearing in the training

and validation sets. The vocabulary size of words is V = 100, 797. There are 1,712 entity

types and 4,996 relation types in the KB subgraphs. Notably, in FreeBase, one entity might

have multiple entity types. We only use the first one available, which is typically the most

concrete one. For those non-entity nodes which are boolean values or numbers, we use “bool”

or “num” as their types, respectively.

We also adopt a query delexicalization strategy where for each question, the topic

entity mention as well as constraint entity mentions (i.e., those belonging to “date”, “ordinal”

or “number”) are replaced with their types. When encoding KB context, if the overlap

belongs to the above types, we also do this delexicalization, which will guarantee it matches

up with the delexicalized question well in the embedding space.

Given a topic entity, we extract its 2-hop subgraph (i.e., h = 2) to collect candidate

answers, which is sufficient for WebQuestions. At training time, the memory size is limited

to Nmax = 96 candidate answers (for the sake of efficiency). If there are more potential

candidates, we do random sampling as mentioned earlier. We initialize word embeddings

with pre-trained GloVe vectors [273] with word embedding size dv = 300. The relation

embedding size dp, entity type embedding size dt and hidden size d are set as 128, 16 and

128, respectively. The dropout rates on the word embedding layer, question encoder side

and the answer encoder side are 0.3, 0.3 and 0.2, respectively. The batch size is set as 32,

and answer module threshold θ = 0.7. As for the topic entity prediction, we use the same

hyperparameters. For each question, there are 15 candidates after negative sampling in the

training time. When encoding a question, we use a CNN with filter sizes 2 and 3. A linear

projection is applied to merge features extracted with different filters. When encoding a

candidate aspect, we use a CNN with filter size 3. Linear activation and max-pooling are

used together with CNNs. In the training process, we use the Adam optimizer [274] to

39

train the model. The initial learning rate is set as 0.001 which is reduced by a factor of 10

if no improvement is observed on the validation set in 3 consecutive epochs. The training

procedure stops if no improvement is observed on the validation set in 10 consecutive epochs.

The hyper-parameters are tuned on the development set.

3.3.4 Experimental Results

As shown in Table 3.1, our method can achieve an F1 score of 0.557 when the gold

topic entity is known, which gives an upper bound of our model performance. When the

gold topic entity is unknown, we report the results using: 1) the Freebase Search API, which

achieves a recall@1 score of 0.857 on the test set for topic entity linking, and 2) the topic

entity predictor, which achieves a recall@1 score of 0.898 for entity retrieval.

As for the performance of BAMnet on WebQuestions, it achieves an F1 score of 0.518

using the topic entity predictor, which is significantly better than the F1 score of 0.497

using the Freebase Search API. We can observe that BAMnet significantly outperforms pre-

vious state-of-the-art IR-based methods, which conclusively demonstrates the effectiveness

of modeling bidirectional interactions between questions and the KB.

It is important to note that unlike the state-of-the-art SP-based methods, BAMnet re-

lies on no external resources and very few hand-crafted features, but still remains competitive

with those approaches. Based on careful hand-drafted rules, some SP-based methods [130],

[134] can better model questions with constraints and aggregations. For example, [134]

applies many manually designed rules and features to improve performance on questions

with constraints and aggregations, and [130] directly models temporal (e.g., “after 2000”),

ordinal (e.g., “first”) and aggregation constraints (e.g., “how many”) by adding detected

constraint nodes to query graphs. In contrast, our method is end-to-end trainable, with very

few hand-crafted rules.

Additionally, [130], [138] train their models on external Q&A datasets to get extra

supervision. For a fairer comparison, we only show their results without training on external

Q&A datasets. Similarly, for hyhrid systems [17], [142], we only report results without using

Wikipedia free text. It is interesting to note that both [134] and [130] also use the ClueWeb

dataset for learning more accurate semantics. The F1 score of [134] drops from 0.525 to

0.509 if ClueWeb information is removed. To summarize, BAMnet achieves state-of-the-art

performance of 0.518 without recourse to any external resources and relies only on very few

40

hand-crafted features. If we assume gold-topic entities are given, then BAMnet achieves an

F1 of 0.557.

Table 3.1: Results on the WebQuestions test set. Bold: best in-category
performance.

Methods (ref) Macro F1

SP-based

[3] 0.357
[137] 0.443
[270] 0.453
[133] 0.494
[128] 0.497
[134] 0.525
[129] 0.503
[138] 0.516
[130] 0.524
[142] 0.471
[271] 0.495
[131] 0.510
[132] 0.496

IR-based

[5] 0.392
[15] 0.413
[9] 0.408
[16] 0.422
[17] 0.471
[18] 0.429

Our Method: BAMnet

w/ gold topic entity 0.557
w/ Freebase Search API 0.497
w/ topic entity predictor 0.518

3.3.5 Ablation Study

We now discuss the performance impact of the different modules and strategies in

BAMnet. Note that gold topic entity is assumed to be known when we do this ablation

study, because the error introduced by topic entity prediction might reduce the real per-

formance impact of a module or strategy. As shown in Table 3.2, significant performance

drops were observed after turning off some key attention modules, which confirms that the

real power of our method comes from the idea of hierarchical two-way attention. As we can

41

see, when turning off the two-layered bidirectional attention network, the model performance

drops from 0.557 to 0.534. Among all submodules in the attention network, the importance

module is the most significant since the F1 score drops to 0.540 without it, thereby confirming

the effectiveness of modeling the query-to-KB attention flow. On the flip side, the impor-

tance of modeling the KB-to-query attention flow is confirmed by the fact that replacing

the KB-aware attention module with self-attention significantly degrades the performance.

Besides, the secondary attention layer, the enhancing module, also contributes to the overall

model performance. Finally, we find that the topic entity delexicalization strategy has a

big influence on the model performance while the constraint delexicalization strategy only

marginally boosts the performance.

Table 3.2: Ablation results on the WebQuestions test set. Gold topic entity is
assumed to be known.

Methods Macro F1

all 0.557
w/o two-layered bidirectional attn 0.534
w/o kb-aware attn (+self-attn) 0.544
w/o importance module 0.540
w/o enhancing module 0.550
w/o generalization module 0.542
w/o joint type matching 0.545
w/o topic entity delexicalization 0.529
w/o constraint delexicalization 0.554

3.3.6 Interpretability Analysis

Here, we show that our method does capture the mutual interactions between question

words and KB aspects, by visualizing the attention matrix AQM produced by the reasoning

module. Fig. 3.4 shows the attention heatmap generated for a test question “who did loca-

tion surrender to in number ” (where “location” and “ number ” are entity types which

replace the topic entity mention “France” and the constraint entity mention “ww2”, respec-

tively in the original question). As we can see, the attention network successfully detects the

interactions between “who” and answer type, “surrender to” and answer path, and focuses

more on those words when encoding the question.

To further examine the importance of the two-way flow of interactions, in Table 3.3,

42

we show the predicted answers of BAMnet with and without the two-layered bidirectional

attention network on samples questions from the WebQuestions test set. We divide the

questions into three categories based on which kind of KB aspect is the most crucial for

answering them. As we can see, compared to the simplified version which is not equipped

with bidirectional attention, our model is more capable of answering all the three types of

questions.

Fig. 3.4: Attention heatmap generated by the reasoning module. Best viewed
in color.

3.3.7 Error Analysis

To better examine the limitations of our approach, we randomly sampled 100 questions

on which our method performed poorly (i.e., with per-question F1 score less than 0.6), and

categorized the errors. We found that around 33% of errors are due to label issues of

gold answers and are not real mistakes. This includes incomplete and erroneous labels,

and also alternative correct answers. For instance our method generated more complete

answers (i.e., “Modern art”, “Pop art”, “Printmaking”, “Photography” and “Painting”) for

the question “what types of art did andy warhol do?” while the gold standard answer is just

“Pop art”. Likewise, the gold standard answer for “where are samsung based?” is “Seoul”

while our method answered “Seoul”, “Seoul Capital Area” and “Daegu” that are all correct.

Constraints are another source of errors (11%), with temporal constraints accounting for

43

Table 3.3: Predicted answers of BAMnet w/ and w/o bidirectional attention
on the WebQuestions test set.

KB
Aspects

Questions BAMnet w/o BiAttn. BAMnet Gold Answers

Answer
Type

What degrees did Obama
get in college?

Harvard Law School,
Columbia University,
Occidental College

Bachelor of Arts,
Juris Doctor,

Political Science

Juris Doctor,
Bachelor of Arts

What music period did
Beethoven live in?

Austrian Empire,
Germany, Bonn

Classical music,
Opera

Opera,
Classical music

Answer
Path

Where did Queensland
get its name from?

Australia Queen Victoria Queen Victoria

Where does Delaware
river start?

Delaware Bay
West Branch

Delaware River,
Mount Jefferson

West Branch
Delaware River,
Mount Jefferson

Answer
Context

What are the major
cities in Ukraine?

Kiev, Olyka,
...

Vynohradiv, Husiatyn
Kiev Kiev

Who is running for vice president
with Barack Obama 2012?

David Petraeus Joe Biden Joe Biden

most. Some questions have implicit temporal (e.g., tense) constraints which our method

does not model. For instance, “where do the seattle seahawks play?” is being asked in

present tense, but our method generates more answers, which would be correct if tense is

ignored. An example of an ordinal question, which our method failed to answer is “what

was pink floyd’s first album?” A third source of error is what we term type errors (13%), for

which our method generates more answers than needed because of poorly utilizing answer

type information. For instance, for “where did derek fisher go to college?”, some answers

generated by our method are actually high schools. This can be addressed to some extent by

tuning the answer module threshold θ, which can improve the precision. For some questions,

our method just failed to figure out the correct answer type. Lexical gap is another source of

errors (5%). For instance, the keyword “electorate” in question “what electorate does anna

bligh represent?” neither appears in the training set nor the corresponding KB subgraph

of topic entity “anna bligh”. Finally, other sources of errors (38%) include topic entity

prediction error, question ambiguity, incomplete answers and other miscellaneous errors.

3.4 Conclusion and Future Work

We introduced a novel and effective bidirectional attentive memory network for the

purpose of KBQA. To our best knowledge, we are the first to model the mutual interactions

44

between questions and a KB, which allows us to distill the information that is the most rele-

vant to answering the questions on both sides of the question and KB. Experimental results

show that our method significantly outperforms previous IR-based methods while remaining

competitive with hand-crafted SP-based methods. Both ablation study and interpretability

analysis verify the effectiveness of the idea of modeling mutual interactions. In addition,

our error analysis shows that our method actually performs better than what the evaluation

metrics indicate.

In the future, we would like to explore effective ways of modeling more complex types

of constraints (e.g., ordinal, comparison and aggregation).

CHAPTER 4

CONVERSATIONAL MACHINE READING

COMPREHENSION

4.1 Overview

Conversational machine comprehension (MC) has proven significantly more challenging

compared to traditional MC since it requires better utilization of conversation history [37],

[38], [40]. However, most existing approaches [41]–[43] do not effectively capture conversation

history and thus have trouble handling questions involving coreference or ellipsis. Moreover,

when reasoning over passage text, most of them simply treat it as a word sequence without

exploring rich semantic relationships among words [150], [151]. In this work, we first propose

a simple yet effective graph structure learning technique to dynamically construct a question

and conversation history aware context graph at each conversation turn. Then we propose

a novel Recurrent Graph Neural Network (RGNN), and based on that, we introduce a flow

mechanism to model the temporal dependencies in a sequence of context graphs. Answers

are finally predicted based on the matching score of the question embedding and the context

graph embedding at each turn.

We highlight our contributions as follows:

• We propose a novel GNN based model, namely GraphFlow, for conversational MC

which captures conversational flow in a dialog.

• We dynamically construct a question and conversation history aware context graph at

each turn, and propose a novel Recurrent Graph Neural Network based flow mechanism

to process a sequence of context graphs.

• On three public benchmarks (i.e., CoQA, QuAC and DoQA), our model shows com-

petitive performance compared to existing state-of-the-art methods. In addition, vi-

sualization experiments show that our model can offer good interpretability for the

reasoning process.

This chapter previously appeared as: Y. Chen, L. Wu, and M. J. Zaki, “Graphflow: Exploiting conver-
sation flow with graph neural networks for conversational machine comprehension,” in Proc. 29th Int. Joint
Conf. Artif. Intell., Jul. 2020, pp. 1230–1236. Copyright c© 2020, IJCAI (https://www.ijcai.org).

45

46

Fig. 4.1: Overall architecture of the proposed model.

4.2 Approach: GraphFlow

The task of conversational Machine Comprehension is to answer a natural language

question given the context and conversation history. Let us denote C as the context which

consists of a word sequence {c1, c2, ..., cm} and Q(i) as the question at the i-th turn which

consists of a word sequence {q(i)1 , q
(i)
2 , ..., q

(i)
n }. And there are totally T turns in a conversation.

As shown in Fig. 4.1, our proposed GraphFlow model consists of Encoding Layer,

Reasoning Layer and Prediction Layer. The Encoding Layer encodes conversation history

and context that aligns question information. The Reasoning Layer dynamically constructs

a question and conversation history aware context graph at each turn, and then applies a

flow mechanism to process a sequence of context graphs. The Prediction Layer predicts

the answers based on the matching score of the question embedding and the context graph

embedding. The details of these modules are given next.

4.2.1 Encoding Layer

We apply an effective encoding layer to encode the context and the question, which

additionally exploits conversation history and interactions between them.

Linguistic features. For context word cj, we encode linguistic features into a vector

fling(c
(i)
j) concatenating POS (part-of-speech), NER (named entity recognition) and exact

matching (which indicates whether cj appears in Q(i)) embeddings.

Pretrained word embeddings. We use 300-dim GloVe [273] embeddings and 1024-dim

BERT [123] embeddings to embed each word in the context and the question. Compared to

47

GloVe, BERT better utilizes contextual information when embedding words.

Aligned question embeddings. Exact matching matches words on the surface form;

we further apply an attention mechanism to learn soft alignment between context words

and question words. Since this soft alignment operation is conducted in parallel at each

turn, for the sake of simplicity, we omit the turn index i when formulating the alignment

operation. Following [275], for context word cj at each turn, we incorporate an aligned

question embedding

falign(cj) =
∑
k

βj,kg
Q
k (4.1)

where gQ
k is the GloVe embedding of the k-th question word qk and βj,k is an attention score

between context word cj and question word qk. The attention score βj,k is computed by

βj,k ∝ exp(ReLU(WgC
j)TReLU(WgQ

k)) (4.2)

where W is a d × 300 trainable weight with d being the hidden state size, and gC
j is the

GloVe embedding of context word cj. To simplify notation, we denote the above attention

mechanism as Align(X,Y,Z), meaning that an attention matrix is computed between two

sets of vectors X and Y, which is later used to get a linear combination of vector set Z.

Hence we can reformulate the above alignment as

falign(C) = Align(gC ,gQ,gQ) (4.3)

Conversation history. Conversation history is crucial for understanding questions. Fol-

lowing [38], we concatenate a feature vector fans(c
(i)
j) encoding previous N answer locations

to context word embeddings. Preliminary experiments showed that it is helpful to also

prepend previous N question-answer pairs to a current question. When prepending con-

versation history, a common choice is to separate the current question from conversation

history using certain special token, which does not work well in practice as observed by [38].

We find a more effective strategy to do the separation which is for each word vector in an

augmented question, we concatenate a turn marker embedding fturn(q
(i)
k) indicating which

turn the word belongs to (e.g., i indicates the previous i-th turn).

In summary, at the i-th turn in a conversation, each context word cj is encoded by a

vector w
(i)
cj which is a concatenation of linguistic vector fling(c

(i)
j), word embeddings (i.e., gC

j

48

and BERTC
j), aligned vector falign(c

(i)
j) and answer vector fans(c

(i)
j). And each question word

q
(i)
k is encoded by a vector w

(i)
qk which is a concatenation of word embeddings (i.e., gQ(i)

k and

BERTQ(i)

k) and turn marker vector fturn(q
(i)
k). We denote W

(i)
C and W

(i)
Q as a sequence of

context word vectors w
(i)
cj and question word vectors w

(i)
qk , respectively.

4.2.2 Reasoning Layer

When performing reasoning over context, unlike most previous methods that regard

context as a word sequence, we opt to treat context as a “graph” of words that captures

rich semantic relationships among words, and apply a Recurrent Graph Neural Network to

process a sequence of context graphs.

4.2.2.1 Question Understanding

For a question Q(i), we apply a bidirectional LSTM [172] to the question embeddings

W
(i)
Q to obtain contextualized embeddings Q(i) ∈ Rd×n.

Q(i) = q
(i)
1 , ...,q

(i)
n = BiLSTM(W

(i)
Q) (4.4)

And the question is then represented as a weighted sum of question word vectors via

a self attention mechanism,

q̃(i) =
∑
k

a
(i)
k q

(i)
k (4.5a)

where a
(i)
k ∝ exp(wTq

(i)
k) (4.5b)

where w is a d-dim trainable weight.

Finally, to capture the dependency among question history, we encode the sequence of

questions with a LSTM to generate history-aware question vectors.

p(1), ...,p(T) = LSTM(q̃(1), ..., q̃(T)) (4.6)

The output hidden states of the LSTM network p(1), ...,p(T) will be used for predicting

answers.

49

4.2.2.2 Context Graph Learning

The intrinsic context graph structure is unfortunately unknown. Moreover, the context

graph structure might vary across different turns by considering the changes of questions and

conversation history. Most existing applications of GNNs [225], [226], [232] use ground-truth

or manually constructed graphs which have some limitations. First, the ground-truth graphs

are not always available. Second, errors in manual construction process can be propagated

to subsequent modules. Unlike previous methods, we automatically construct graphs from

raw context, which are combined with the rest of the system to make the whole learning

system end-to-end trainable. We dynamically build a question and conversation history

aware context graph to model semantic relationships among context words at each turn.

Specifically, we first apply an attention mechanism to the context representations W
(i)
C

(which additionally incorporate both question information and conversation history) at the

i-th turn to compute an attention matrix A(i), serving as a weighted adjacency matrix for

the context graph, defined as,

A(i) = (W
(i)
C � u)TW

(i)
C

(4.7)

where� denotes element-wise multiplication, and u is a non-negative dc-dim trainable weight

vector which learns to highlight different dimensions of w
(i)
cj whose dimension is dc.

Considering that a fully connected context graph is not only computationally expensive

but also might introduce noise (i.e., unimportant edges), a simple kNN-style graph sparsi-

fication operation is applied to select the most important edges from the fully connected

graph, resulting in a sparse graph. To be concrete, given a learned attention matrix A(i),

we only keep the K nearest neighbors (including itself) as well as the associated attention

scores (i.e., the remaining attentions scores are masked off) for each context node. We then

apply a softmax function to these selected adjacency matrix elements to get a normalized

adjacency matrix.

Ã(i) = softmax(topk(A(i))) (4.8)

Note that the supervision signal is still able to back-propagate through the kNN-style graph

sparsification module since the K nearest attention scores are kept and used to compute the

weights of the final normalized adjacency matrix.

To summarize, at each turn in a conversation, we dynamically build a weighted directed

50

context graph G(i) which depends on the semantic meanings of the context, the question as

well as the conversation history.

4.2.2.3 Context Graph Reasoning

Fig. 4.2: Architecture of the proposed Recurrent Graph Neural Network for
processing a sequence of context graphs.

When reasoning over a sequence of context graphs, we want to consider not only the

relationships among graph nodes, but also the sequential dependencies among graphs. Espe-

cially for the conversational MC task, we hope the results of previous reasoning processes can

be incorporated into the current reasoning process since they potentially capture important

information for answering the current question.

Therefore, we propose a novel Recurrent Graph Neural Network (RGNN) to process a

sequence of graphs, as shown in Fig. 4.2. As we advance in a sequence of graphs, we process

each graph using a shared GNN cell and the GNN output will be used when processing the

next graph. One can think that it is analogous to an RNN-style structure where the main

difference is that each element in a sequence is not a data point, but instead a graph. Our

RGNN module combines the advantages of RNNs which are good at sequential learning (i.e.,

modeling sequential data), and GNNs which are good at relational reasoning (i.e., modeling

graph-structured data).

The computational details of RGNN are as follows. Let us denote C(i) as the initial

context node embedding at the i-th turn. Before we apply a GNN to the context graph G(i),
we update its node embeddings by fusing both the original node information C(i) and the

updated node information C(i−1) computed by a parameter-sharing GNN at the (i − 1)-th

51

turn via a fusion function,

C(i) = GNN(Fuse(C(i),C(i−1)), Ã(i)) (4.9)

where we set C(0) = C0 as we do not incorporate any historical information at the first turn.

The fusion function is designed as a gated sum of two information sources,

Fuse(a,b) = z ∗ a + (1− z) ∗ b (4.10a)

z = σ(Wz[a; b; a ∗ b; a− b] + bz) (4.10b)

where σ is a sigmoid function and z is a gating vector. As a result, the graph node embedding

outputs of the reasoning process at the previous turn are used as a starting state when

reasoning at the current turn.

We use Gated Graph Neural Networks (GGNN) [197] as our GNN cell, but the frame-

work is agnostic to the particular choice of GNN cell. In GGNN we do multi-hop message

passing through a graph to capture long-range dependency where the same set of network

parameters are shared at every hop of computation. At each hop of computation, for every

graph node, we compute an aggregation vector as a weighted average of all its neighbor-

ing node embeddings where the weights come from the normalized adjacency matrices Ã(i).

Then, a Gated Recurrent Unit (GRU) [78] is used to update node embeddings by incorpo-

rating the aggregation vectors. We use the updated node embeddings at the last hop as the

final node embeddings.

To simplify notation, we denote the above RGNN module as C(i) = RGNN(C(i), Ã(i)),

i = 1, . . . , T which takes as input a sequence of graph node embeddings {C(i)}Ti=1 as well as a

sequence of the normalized adjacency matrices {Ã(i)}Ti=1, and outputs a sequence of updated

graph node embeddings {C(i)}Ti=1.

While a GNN is responsible for modeling global interactions among context words,

modeling local interactions between consecutive context words is also important for the

task. Therefore, before feeding the context word representations to a GNN, we first apply

a BiLSTM to encode local dependency, that is, C(i) = BiLSTM(W
(i)
C), and then use the

output C(i) as the initial context node embedding.

Inspired by recent work [276] on modeling the context with different levels of granu-

52

larity, we choose to apply stacked RGNN layers where one RGNN layer is applied on low

level representations of the context and the second RGNN layer is applied on high level

representations of the context. The output of the second RGNN layer {C̃(i)}Ti=1 is the final

context representations.

H
(i)
C = [C(i); gC ; BERTC] (4.11a)

H
(i)
Q = [Q(i); gQ(i)

; BERTQ(i)

] (4.11b)

f 2
align(C(i)) = Align(H

(i)
C ,H

(i)
Q ,Q

(i)] (4.11c)

Ĉ(i) = BiLSTM([C(i); f 2
align(C(i))]) (4.11d)

C̃(i) = RGNN(Ĉ(i), Ã(i)), i = 1, . . . , T (4.11e)

4.2.3 Prediction Layer

We predict answer spans by computing the start and end probabilities of the j-th

context word for the i-th question. For the sake of simplicity, we omit the turn index i when

formulating the prediction layer. The start probability P S
j is calculated by,

P S
j ∝ exp(c̃T

j WSp) (4.12)

where WS is a d×d trainable weight and p (turn index omitted) is the question representation

obtained in Eq. (4.6). Next, p is passed to a GRU cell by incorporating context summary

and converted to p̃.

p̃ = GRU(p,
∑
j

P S
j c̃j) (4.13)

Then, the end probability PE
j is calculated by,

PE
j ∝ exp(c̃T

j WEp̃) (4.14)

where WE is a d× d trainable weight.

We apply an answer type classifier to handle unanswerable questions and questions

whose answers are not text spans in the context. The probability of the answer type (e.g.,

“unknown”, “yes” and “no”) is calculated as follows,

PC = σ(fc(p)[fmean(C̃); fmax(C̃)]T) (4.15)

53

where fc is a dense layer which maps a d-dim vector to a (num class × 2d)-dim vector.

Further, σ is a sigmoid function for binary classification and a softmax function for multi-class

classification. fmean(.) and fmax(.) denote the average pooling and max pooling operations,

respectively.

4.2.4 Training and Testing

The training objective for the i-th turn is defined as the cross entropy loss of both text

span prediction (if the question requires it) and answer type prediction where the turn index

i is omitted for the sake of simplicity,

L = −IS(log(P S
s) + log(PE

e)) + logPC
t

(4.16)

where IS indicates whether the question requires answer span prediction, s and e are the

ground-truth start and end positions of the span, and t indicates the ground-truth answer

type.

During inference, we first use PC to predict whether the question requires text span

prediction. If yes, we predict the span to be ŝ, ê with maximum P S
ŝ , P

E
ê subject to certain

maximum span length threshold.

4.3 Experiments

In this section, we conduct an extensive evaluation of our proposed model against

state-of-the-art conversational MC models on various benchmarks. The implementation of

our model is publicly available at https://github.com/hugochan/GraphFlow.

4.3.1 Baseline Methods

We compare our method with the following baselines: i) PGNet [41], ii) DrQA [42], iii)

DrQA+PGNet [37], iv) BiDAF++ [43], v) FlowQA [151], vi) SDNet [150], vii) BERT [123]

and viii) Flow (unpublished). Detailed descriptions of the baselines are provided next.

PGNet is a pointer-generator network equipped with the coverage mechanism which was

originally designed for the abstractive text summarization task.

DrQA is strong machine comprehension baseline that combines a search component based on

bigram hashing and TF-IDF matching with a multi-layer RNN model for detecting answers

54

from passages.

DrQA+PGNet is a hybrid model in which DrQA first points to the answer evidence in

the passage, and PGNet naturalizes the evidence into an answer.

BiDAF++ is a model based on BiDAF [8], augmented with self attention [277] and ELMo

contextualized embeddings [122].

FlowQA is a flow-based model that can incorporate intermediate representations generated

during the process of answering previous questions, through an alternating parallel processing

structure.

SDnet is a contextual attention-based deep neural network which leverages inter-attention

and self-attention on passage and conversation history in order to capture the dialog flow.

BERT is a large-scale pretrained language model based on bidirectional Transformer en-

coders. It has been shown that finetuning the BERT model on downstream tasks can achieve

the state-of-the-art results on various NLP tasks [123].

Flow is an unpublished model for conversational machine comprehension.

Following previous works [150], [151], we use an extractive approach with answer type

classifiers on all benchmarks. To handle different answer types in CoQA, we predict the

probability distribution of the answer type (SPAN, YES, NO, and UNANSWERABLE) and

replace the predicted span with “yes”, “no”, or “unknown” tokens except for the “SPAN”

answer type. In QuAC, the unanswerable questions are handled as an answer span (P

contains a special token), and the type prediction for yes/no questions is not evaluated on

the leaderboard. Therefore, we skip the answer type prediction step.

4.3.2 Data and Metrics

CoQA [37] contains 127k questions with answers, obtained from 8k conversations.

Answers are in free-form and hence are not necessarily text spans from context (i.e., 33.2%

of the questions have abstractive answers). Although this calls for a generation approach,

following previous work [43], [150], [151], as detailed in Section 4.2.3, we adopt an extractive

approach with additional answer type classifiers to handle non-extractive questions. The

average length of questions is only 5.5 words, which means conversation history is important

for better understanding those questions. The average number of turns per dialog is 15.2.

Notably, in the testing set, there are two out-of-domain datasets which are reserved for testing

55

only. QuAC [38] contains 98k questions with answers, obtained from 13k conversations. All

the answers are text spans from context. The average length of questions is 6.5 and there

are on average 7.2 questions per dialog. The average length of QuAC context is 401 which

is longer than that of CoQA which is 271. The average length of QuAC answers is 14.6

which is also longer than that of CoQA which is 2.7. DoQA [40] contains 7.3k questions

with answers, obtained from 1.6k conversations in the cooking domain. Similar to CoQA,

31.3% of the answers are not directly extracted from context.

The main evaluation metric is F1 score which is the harmonic mean of precision and

recall at word level between the predication and ground truth. In addition, for QuAC and

DoQA, the Human Equivalence Score (HEQ) is used to judge whether a system performs as

well as an average human. HEQ-Q and HEQ-D are model accuracies at question level and

dialog level. Please refer to [37], [38] for details of these metrics.

4.3.3 Model Settings

We construct the vocabulary of words from the training set but filter out those infre-

quent words (i.e., word count less than 5) to reduce the vocabulary size. The embedding

sizes of POS, NER, exact matching and turn marker embeddings are set to 12, 8, 3 and 3,

respectively. We fix the pretrained GloVe vectors. Following [150], we pre-compute BERT

embeddings for each word using a weighted sum of BERT layer outputs. The size of all

hidden layers is set to 300. When constructing context graphs, the neighborhood size is set

to 10. The number of GNN hops is set to 5 for CoQA and DoQA, and 3 for QuAC. During

training, we apply dropout after embedding layers (0.3 for GloVe and 0.4 for BERT) and

RNN layers (0.3 for all). We use Adamax [274] as the optimizer and the learning rate is

set to 0.001. We reduce the learning rate by a factor of 0.5 if the validation F1 score has

stopped improving every one epoch. We stop the training when no improvement is seen

for 10 consecutive epochs. We clip the gradient at length 10. We batch over dialogs and

the batch size is set to 1. When augmenting the current turn with conversation history, we

only consider the previous two turns. When doing text span prediction, the span is con-

strained to have a maximum length of 12 for CoQA, 35 for QuAC and 30 for DoQA. All

these hyper-parameters are tuned on the development set.

56

4.3.4 Experimental Results

As shown in Table 4.1, Table 4.2, and Table 4.3, our model outperforms or achieves

competitive performance compared with various state-of-the-art baselines. Compared with

FlowQA which is also based on the flow idea, our model improves F1 by 2.3% on CoQA,

0.8% on QuAC and 2.5% on DoQA, which demonstrates the superiority of our RGNN based

flow mechanism over the IF mechanism. Compared with SDNet which relies on sophisticated

inter-attention and self-attention mechanisms, our model improves F1 by 0.7% on CoQA.

Table 4.1: Model and human performance (% in F1 score) on the CoQA test
set.

Child. Liter. Mid-High. News Wiki Reddit Science Overall

PGNet 49.0 43.3 47.5 47.5 45.1 38.6 38.1 44.1
DrQA 46.7 53.9 54.1 57.8 59.4 45.0 51.0 52.6
DrQA+PGNet 64.2 63.7 67.1 68.3 71.4 57.8 63.1 65.1
BiDAF++ 66.5 65.7 70.2 71.6 72.6 60.8 67.1 67.8
FlowQA 73.7 71.6 76.8 79.0 80.2 67.8 76.1 75.0
Flow – – – – – – – 75.8
SDNet 75.4 73.9 77.1 80.3 83.1 69.8 76.8 76.6
GraphFlow 77.1 75.6 77.5 79.1 82.5 70.8 78.4 77.3
Human 90.2 88.4 89.8 88.6 89.9 86.7 88.1 88.8

Table 4.2: Model and human performance (in %) on the QuAC test set.

F1 HEQ-Q HEQ-D

BiDAF++ 60.1 54.8 4.0
FlowQA 64.1 59.6 5.8
GraphFlow 64.9 60.3 5.1
Human 80.8 100 100

Table 4.3: Model and human performance (in %) on the DoQA test set.

F1 HEQ-Q HEQ-D

BERT 41.4 38.6 4.8
FlowQA 42.8 35.5 5.0
GraphFlow 45.3 41.5 5.3
Human 86.7 – –

57

Table 4.4: Ablation study (in %) on the CoQA dev. set.

F1

GraphFlow (2-His) 78.3
– PreQues 78.2
– PreAns 77.7
– PreAnsLoc 76.6
– BERT 76.0

– RecurrentConn 69.9
– RGNN 68.8
– kNN 69.9

GraphFlow (1-His) 78.2
GraphFlow (0-His) 76.7

4.3.5 Ablation Study

We conduct an extensive ablation study to further investigate the performance impact

of different components in our model. Here we briefly describe ablated systems: – Recurrent-

Conn removes temporal connections between consecutive context graphs, – RGNN removes

the RGNN module, – kNN removes the kNN-style graph sparsification operation, – PreQues

does not prepend previous questions to the current turn, – PreAns does not prepend previ-

ous answers to the current turn, – PreAnsLoc does not mark previous answer locations in

the context, and – BERT removes pretrained BERT embeddings. We also show the model

performance with no conversation history GraphFlow (0-His) or one previous turn of the

conversation history GraphFlow (1-His).

Table 4.4 shows the contributions of the above components on the CoQA development

set. Our proposed RGNN module contributes significantly to the model performance (i.e.,

improves F1 score by 7.2%). In addition, within the RGNN module, both the GNN part

(i.e., 1.1% F1) and the temporal connection part (i.e., 6.1% F1) contribute to the results.

This verifies the effectiveness of representing a passage as a graph and modeling the temporal

dependencies in a sequence of context graphs. The kNN-style graph sparsification operation

also contributes significantly to the model performance. We notice that explicitly adding

conversation history to the current turn helps the model performance. We can see that

the previous answer information is more crucial than the previous question information.

And among many ways to use the previous answer information, directly marking previous

answer locations seems to be the most effective. We conjecture this is partially because

the turn transitions in a conversation are usually smooth and marking the previous answer

58

Fig. 4.3: The highlighted part of the context indicates GraphFlow’s focus shifts
between consecutive question turns.

locations helps the model better identify relevant context chunks for the current question.

Last but not least, we find that the pretrained BERT embedding has significant impact on

the performance, which demonstrates the power of large-scale pretrained language models.

4.3.6 Interpretability Analysis

Following [151], we visualize the changes of hidden representations of context words

between consecutive turns. Specifically, we compute cosine similarity of hidden represen-

tations of the same context words at consecutive turns, and then highlight the words that

have small cosine similarity scores (i.e., change more significantly). For better visualization,

we apply an attention threshold of 0.3 to highlight only the dramatically changing context

words. Fig. 4.3 highlights the most changing context words (due to the page limit, we do not

show full context) between consecutive turns in a conversation from the CoQA dev. set. As

we can see, the hidden representations of context words which are relevant to the consecutive

questions are changing most and thus highlighted most. We suspect this is in part because

when the focus shifts, the model finds out that the context chunks relevant to the previous

59

turn become less important but those relevant to the current turn become more important.

Therefore, the memory updates in these regions are the most active.

4.4 Conclusion and Future Work

We proposed a novel Graph Neural Network (GNN) based model, namely Graph-

Flow, for conversational machine comprehension (MC) which carries over the reasoning

output throughout a conversation. Besides, we proposed a simple yet effective graph struc-

ture learning technique to dynamically construct a question and conversation history aware

context graph at each conversation turn. On three recently released conversational MC

benchmarks, our proposed model achieves competitive results compared with previous ap-

proaches. Interpretability analysis shows that our model can offer good interpretability for

the reasoning process.

In the future, we would like to investigate more effective ways of automatically learn-

ing graph structures from free text and modeling temporal connections between sequential

graphs.

CHAPTER 5

NATURAL QUESTION GENERATION FROM KGS

5.1 Overview

The task of question generation (QG) aims to generate natural language questions

based on a given form of data, such as KG or tables [59], [63], text [73], [75], [152], or

images [57], where the generated questions need to be answerable from the input data. In

this paper, we focus on QG from a KG subgraph.

Knowledge graph (KG) question generation (QG) aims to generate natural language

questions from KGs and target answers. Previous works mostly focus on a simple setting

which is to generate questions from a single KG triple. In this work, we focus on a more

realistic setting where we aim to generate questions from a KG subgraph and target answers.

In addition, most of previous works built on either RNN-based or Transformer-based models

to encode a linearized KG sugraph, which totally discards the explicit structure information

of a KG subgraph.

In order to address the above challenges, we present a subgraph guided Knowledge

Graph Question Generation approach with Graph Neural Networks (GNNs). To this end,

we introduce for the first time the Graph2Seq architecture for the task of KG-QG to address

the second challenge. We then extend the regular GNN-based encoder to allow processing

directed and multi-relational KG subgraphs to solve the first challenge. In addition, we

propose a simple yet elegant way to leverage the context information from the answers

to effectively handle the third challenge. Extensive experimental results demonstrate the

superior performance of our proposed model over the state-of-the-art baselines on two QG

benchmarks.

We highlight our main contributions as follows:

• We propose a novel Graph2Seq model for subgraph guided KG-QG. The proposed

Graph2Seq model employs bidirectional graph embedding and we design two different

GNN encoders to effectively encode KG subgraphs with multi-relational edges.

This chapter has been submitted to: Y. Chen, L. Wu, and M. J. Zaki, “Toward subgraph guided
knowledge graph question generation with graph neural networks,” in Proc. 2020 Conf. Empirical Meth.
Natural Lang. Process.

60

61

Fig. 5.1: Overall architecture of our proposed model. Best viewed in color.

• We extend the RNN decoder with a novel copying mechanism that allows the entire

node attribute to be borrowed from the input KG subgraph when generating questions.

• We investigate two different ways of initializing node/edge embeddings when apply-

ing a GNN encoder to process KG subgraphs. In addition, we study the impact of

directionality (i.e., bidirectional vs. unidirectional) on GNN encoder.

• Experimental results show that our model improves the state-of-the-art BLEU-4 score

from 11.57 to 29.40 and from 25.99 to 59.59 on WQ and PQ benchmarks, respectively.

Experiments also show that our QG model can consistently benefit the QA task as a

mean of data augmentation.

5.2 Approach: Toward Subgraph Guided Knowledge Graph Ques-

tion Generation with Graph Neural Networks

In this section, we define the KG-QG task, and then present our novel Graph2Seq

model for subgraph guided KG-QG. We first motivate the design, and then present the

details of each component as shown in Fig. 5.1.

5.2.1 Problem Formulation

Our focus is on question generation from a KG subgraph, along with potential target

answers. We assume that a KG subgraph is a collection of triples (i.e., subject-predicate-

object), that can also be represented as a graph G = (V,E), where V ∈ V denotes a set

of entities (i.e., subjects or objects) and E ∈ E denotes all the predicates connecting these

entities. We denote by V and E the complete entity set and predicate set of the KG,

62

respectively. We also assume that all the answers from the target answer set V a are from the

entity set V , which is the normal setting of the task of KBQA [97]. The task of KG-QG is

to generate the best NL question consisting of a sequence of word tokens Ŷ = {y1, y2, ..., yT}
which maximizes the conditional likelihood Ŷ = arg maxY P (Y |G, V a) where T is the length

of the question. We focus on the problem setting where we have a set of KG subgraphs (and

answers) and target questions pairs, to learn the mapping; existing QG approaches [66],

[68], [69] make a similar assumption. Although the three main challenges we have discussed

before are based on QG for texts, other QG tasks from other data sources also share some or

most of issues when dealing with these tasks. Therefore, our model could be used or adapted

to generalize to cope with these tasks as well.

5.2.2 Encoding Layer

Let us denote V as a set of nodes (i.e., entities) {v1, v2, ..., vn} in a KG subgraph G,

where each node is associated with some attributes such as text or ID. Similarly, let us

denote E as a set of edges (i.e., predicates) {e1, e2, ..., em} in G, where each edge has some

initial attributes such as text or ID.

5.2.2.1 Encoding Nodes and Edges

Before applying the GNN encoder to process a KG subgraph, we need to map nodes

and edges to an initial embedding space that encodes their attributes. There are two common

ways of encoding nodes and edges in a KG. One solution is based on global KG embeddings

that are pretrained on the whole KG by some KG representation learning algorithm such as

TransE [278], while the other one is based on pretrained embeddings (e.g., GloVe [273]) of

the words making up the textual attributes. In this work, we choose to encode nodes and

edges based on word embeddings of their textual attributes in our main model. We posit

that it is relatively easier for a model to learn the mapping from the input KG subgraph to

the output NL question with both sides based on word embeddings. We empirically compare

and analyze the two encoding strategies in our experiments.

In order to encode the nodes and edges in a KG subgraph, we apply two bidirectional

LSTMs [172] for nodes (i.e., one for nodes, and one for edges) to encode their associated

text. The concatenation of the last forward and backward hidden states of the BiLSTM is

used as the initial embeddings for nodes and edges.

63

5.2.2.2 Utilizing Target Answers

In the setting of KBQA [97], [99], it is usually assumed that the answers to a question

are entities in a KG subgraph. Since KG-QG is a dual task of KBQA, we assume that

utilizing the target answers along with the KG subgraph can help generate more relevant

questions. To this end, we apply a simple yet effective strategy where we introduce an

additional learnable markup vector associated with each node/edge to indicate whether it is

an answer or not.

Therefore, the initial vector representation of a node/edge will be the concatenation

of the BiLSTM output and the answer markup vector. We denote Xe = {xe
1,x

e
2, ...,x

e
n} and

Xp = {xp
1,x

p
2, ...,x

p
m} as the embeddings of the entity nodes and predicate edges, respectively.

Both Xe and Xp have the same embedding dimension d.

5.2.3 Bidirectional Graph-to-Sequence Generator with Copying Mechanism

RNNs are good at modeling sequential data, however, they cannot handle graph-

structured data. One might need to linearize a graph to a sequence so as to apply an

RNN-based encoder, which will lose the rich structure information in the graph. [69] pro-

posed to encode a set of triples via a Transformer [108] by removing positional encoding in

the original architecture. Even though a Transformer-based encoder might be able to learn

the semantic relations among the triples through the all-to-all attention, the explicit graph

structure is totally discarded. Recently, GNNs have been used to encode graph-structured

data and the resultant models have achieved state-of-the-art performance in many tasks [57],

[198], [230], [236]. In this work, we introduce a novel bidirectional GNN-based encoder to en-

code the KG subgraph, and decode the natural language question via an RNN-based decoder

equipped with node-level copying mechanism.

5.2.3.1 Bidirectional Graph Encoder

Many existing GNNs [193], [196], [204] were not designed to process directed graphs

such as a KG. Even though some GNN variants such as GGSNN [197] and MPNN [195]

are able to handle directed graphs via message passing across graphs, they do not model

the bidirectional information when aggregating information from neighboring nodes for each

node. As a result, messages can only be passed across graphs in a unidirectional way.

In this work, we introduce the Bidirectional Gated Graph Neural Network (BiGGNN)

64

which extends GGSNN [197] by learning node embeddings from both incoming and outgoing

directions in an interleaved fashion when processing a directed graph. A similar bidirectional

approach has been exploited in [198], which extended another popular variant of GNNs -

GraphSAGE [196]. While their method simply learns the node embeddings of each direction

independently and concatenates them at the final step, BiGGNN fuses the intermediate node

embeddings from both directions at every iteration.

The embedding h0
v for node v is initialized to xv, that is, a concatenation of the BiLSTM

output and the answer markup vector. BiGGNN then performs message passing across the

graph for a fixed number of hops, with the same set of network parameters shared at each

hop.

At each hop of computation, for every node in the graph, we apply an aggregation func-

tion that takes as input a set of incoming (or outgoing) neighboring node vectors and outputs

a backward (or forward) aggregation vector. In principle, many order-invariant operators

such as max or attention [204] can be employed to aggregate neighborhood information.

Here we use a simple average aggregator as follows,

hk
Na(v)

= AVG({hk−1
v } ∪ {hk−1

u ,∀u ∈ Na(v)}) (5.1a)

hk
N`(v)

= AVG({hk−1
v } ∪ {hk−1

u ,∀u ∈ N`(v)}) (5.1b)

where Na(v) and N`(v) denote the incoming and outgoing neighbors of v. We then fuse the

node embeddings aggregated from both directions,

hk
N(v)

= Fuse(hk
Na(v)

,hk
N`(v)

) (5.2)

The fusion function is computed as a gated sum of two information sources,

Fuse(a,b) = z� a + (1− z)� b (5.3a)

z = σ(Wz[a; b; a� b; a− b] + bz) (5.3b)

where � is the component-wise multiplication, σ is a sigmoid function, and z is a gating

vector. The gate helps the model to determine how much of the information needs to be

reserved from the two aggregated node embeddings.

Finally, a Gated Recurrent Unit (GRU) [78] is used to update the node embeddings

65

by incorporating the aggregation information.

hk
v = GRU(hk−1

v ,hk
N(v)

) (5.4)

After n hops of GNN computation where n is a hyperparameter, we obtain the final state

embedding hn
v for node v. To compute the graph-level embedding, we first apply a linear

projection to the node embeddings, and then apply max-pooling over all node embeddings

to get a d-dim vector hG.

5.2.3.2 Handling Multi-relational Graphs

Knowledge graphs are typically heterogeneous networks that contain a large number of

edge types. However, many existing GNNs [193], [196], [197], [204] are not directly applicable

to multi-relational graphs. In order to model both node and edge information with GNNs,

researchers have extended them by either having separate learnable weights for different

edge types or having explicit edge embeddings when performing message passing [195], [279].

While the former solution may have severe scalability issues when handling graphs with a

large number of edge types, the later one requires major modifications to existing GNN

architectures. In this work, we explore two solutions to adapt GNNs to multi-relational

graphs as detailed below.

Levi graph transformation. We can directly apply regular GNNs to a multi-relational

KG subgraph by converting it to a Levi graph [280]. Specifically, we treat all edges in the

original graph as new nodes and add new edges connecting original nodes and new nodes,

which results in a bipartite graph. For instance, in a KG subgraph, a triple (Mario Siciliano,

place of birth, Rome) will be converted to “Mario Siciliano→ place of birth→ Rome” where

“place of birth” becomes a new node, and → indicates a new edge connecting an entity and

a predicate. Note that since most KG subgraphs are sparse, the number of newly added

nodes (and edges as well) will at most be linear to the number of original nodes.

Gated message passing with edge information. We also extend BiGGNN to explicitly

incorporate edge embeddings when conducting message passing, calling the resultant variant

66

as BiGGNNedge. Specifically, we rewrite the node aggregation function Eq. (5.1) as follows,

hk
Na(v)

= AVG({hk−1
v } ∪ {f([hk−1

u ; euv]),∀u ∈ Na(v)}) (5.5a)

hk
N`(v)

= AVG({hk−1
v } ∪ {f([hk−1

u ; euv],∀u ∈ N`(v)}) (5.5b)

where f is a nonlinear function (i.e., linear projection + ReLU [281]) applied to the concate-

nation of hk−1
u and euv which is the embedding of the edge connecting node u and v.

5.2.3.3 RNN Decoder with Node-level Copying

We adopt an attention-based [79], [140] LSTM decoder that generates the output

sequence one word at a time. The decoder takes the graph-level embedding hG followed by

two separate fully-connected layers as initial hidden states (i.e., c0 and s0) and the node

embeddings {hn
v ,∀v ∈ G} as the attention memory. The particular attention mechanism

used in our decoder closely follows [41]. Basically, at each decoding step t, an attention

mechanism learns to attend to the most relevant nodes in the input graph, and computes a

context vector h∗t based on the current decoding state st and the attention memory.

We hypothesize that when generating NL questions from a KG subgraph, it is very

likely to directly mention (i.e., copy) entity names that are from the input KG subgraph

even without rephrasing them. When augmented with copying mechanism [154], [155], most

RNN decoders are typically allowed to copy words from the input sequence. We extend

the regular word-level copying mechanism to the node-level copying mechanism that allows

copying node attributes (i.e., node text) from the input graph. At each decoding step, the

generation probability pgen ∈ [0, 1] is calculated from the context vector h∗t , the decoder

state st and the decoder input yt−1. Next, pgen is used as a soft switch to choose between

generating a word from the vocabulary or copying a node attribute from the input graph.

We dynamically maintain an extended vocabulary which is the union of the usual vocabulary

and all node names appearing in a batch of source examples (i.e., KG subgraphs).

5.2.4 Training and Testing

As customary for training sequential models, we minimize the following cross-entropy

loss,

Llm =
∑
t

− logP (y∗t |X, y∗<t) (5.6)

67

where y∗t is the word at the t-th position of the gold output sequence. Scheduled teacher

forcing [282] is adopted to alleviate the exposure bias problem. During the testing phase,

beam search is applied to generate the output.

Besides training our proposed model with the regular cross-entropy loss, we also explore

minimizing a hybrid objective combining both the cross-entropy loss and Reinforcement

Learning (RL) [111] loss that is defined based on evaluation metrics, as detailed next.

Hybrid evaluator. Most prior works on QG employ cross-entropy based training objec-

tive, which is also a de facto choice for training sequential models in many other NLP tasks.

However, cross-entropy based training strategy has some known limitations including expo-

sure bias and evaluation discrepancy between training and testing [81], [109], [110]. That is

to say, in the training phase, a model has access to the ground-truth previous token when

decoding and is optimized toward cross-entropy loss, while in the testing phase, no ground-

truth previous token is provided and cross-entropy loss is not used for evaluation. To tackle

these issues, we introduce a hybrid objective function combining both cross-entropy loss and

Reinforcement Learning (RL) [111] loss for training our Graph2Seq model.

Specifically, we introduce a two-stage training strategy as follows. In the first stage,

the regular cross-entropy loss is used,

Llm =
∑
t

− logP (y∗t |X, y∗<t) (5.7)

where y∗t is the word at the t-th position of the ground-truth output sequence. Scheduled

teacher forcing [282] is adopted to alleviate the exposure bias problem. In the second stage,

we further fine-tune the model by optimizing a mixed objective function combining both

cross-entropy loss and RL loss, defined as,

L = γLrl + (1− γ)Llm (5.8)

where γ is a scaling factor controling the trade-off between the two losses. During the testing

phase, beam search is applied to generate the output.

While our architecture is agnostic to the specific RL algorithm, in this work, we employ

an efficient yet effective RL approach called self-critical sequence training (SCST) [283] to

directly optimize the discrete evaluation metrics. At each training iteration, the RL loss is

68

defined by comparing the reward of the sampled output Y s with the reward of the baseline

output Ŷ ,

Lrl = (r(Ŷ)− r(Y s))
∑
t

logP (yst |X, ys<t) (5.9)

where Y s is produced by multinomial sampling, that is, each word yst is sampled according to

the likelihood P (yt|X, y<t) predicted by the generator, and Ŷ is obtained by greedy search,

that is, by maximizing the output probability distribution at each decoding step. As we can

see, minimizing the above loss is equivalent to maximizing the likelihood of some sampled

output that has a higher reward than the corresponding baseline output.

One of the key factors for RL is to pick the proper reward function. We define r(Y)

as the reward of an output sequence Y , computed by comparing it to the corresponding

ground-truth sequence Y ∗ with some reward metric which is a combination of our evaluation

metrics (e.g., BLEU-4, ROUGE-L, etc.). This lets us directly optimize the model towards

the evaluation metrics.

5.3 Experiments

In this section, we conduct extensive experiments to evaluate the effectiveness of our

proposed model for the QG task. We also conduct experiments to examine whether our

QG model can help the QA task by providing more training data. Besides, we want to

examine whether the introduced GNN-based encoder works better than an RNN-based or

Transformer-based encoder when encoding a KG subgraph for the QG task. In addition,

we explore and analyze two different ways of handling multi-relational graphs with GNNs.

Moreover, we empirically compare two different ways of initializing node and edge embed-

dings before feeding them into a GNN-based encoder. An experimental comparison between

bidirectional GNN-based encoder and unidirectional GNN-based encoder is also provided.

The implementation of our model is publicly available at https://github.com/hugoc

han/Graph2Seq-for-KGQG.

5.3.1 Baseline Methods

We compare our model against the following baselines: i) L2A [73], ii) Transformer

[108], and iii) MHQG+AE [69]. Detailed descriptions of the baselines are provided next.

L2A is a LSTM-based Seq2Seq model equipped with attention mechanism, which takes as

69

input a linearized KG subgraph. It was included in [69] as a baseline. The results of L2A

reported here are taken from [69].

Transformer We also include a Transformer-based encoder-decoder model [284] with copy-

ing mechanism that takes as input a linearized KG subgraph, i.e., a sequence of triples where

each triple is represented as a sequence of tokens containing the subject name, predicate name

and object name.

MHQG+AE employs a Transformer-based encoder to encode a KG subgraph (i.e., a set

of triples), and generates an output question with a Transformer-based decoder. Unlike the

above Transformer baseline, the MHQG+AE model encodes the triple set contained in a

KG subgraph by removing the positional encoding in a regular Transformer architecture,

and their triple embeddings are based on the KG embeddings pretrained by a knowledge-

base representation learning framework called TransE [278]. To the best of our knowledge,

MHQG+AE was probably the first NN-based model that focused on QG from a KG sub-

graph.

5.3.2 Data and Metrics

Following [69], we used WebQuestions (WQ) and PathQuestions (PQ) as our bench-

marks where both of them use Freebase [12] as the underlying KG. The WQ dataset com-

bines examples from WebQuestionsSP [285] and ComplexWebQuestions [286] where both of

them are question answering datasets that contain natural language questions, corresponding

SPARQL queries and answer entities. For each instance in WQ, in order to construct the KG

subgraph, [69] converted its SPARQL query to return a subgraph instead of the answer en-

tity, by changing it from a SELECT query to a CONSTRUCT query. The WQ dataset [69]

contains 18,989/2,000/2,000 (train/development/test) examples. The PQ dataset [287] is

similar to WQ except that the KG subgraph in PQ is a path between two entities that span

two or three hops. The PQ dataset contains 9,793/1,000/1,000 (train/development/test)

examples. Brief statistics of the two datasets are provided in Table 5.1.

Following previous works, we use BLEU-4 [113], METEOR [114] and ROUGE-L [115]

as automatic evaluation metrics. Initially, BLEU-4 and METEOR were designed for evalu-

ating machine translation systems and ROUGE-L was designed for evaluating text summa-

rization systems.

https://github.com/liyuanfang/mhqg

70

Table 5.1: Data statistics. The min/max/avg statistics are reported on KG
triples and queries.

Data # examples # entities # predicates # triples query length
WQ 22,989 25,703 672 2/99/5.8 5/36/15
PQ 9,731 7,250 378 2/3/2.7 8/25/14

We also conducted a small-scale (i.e., 50 random examples per system) human evalua-

tion study on the WQ test set. We asked 6 human evaluators to give feedback on the quality

of questions generated by a set of anonymized competing systems. In each example, given

a KG subgraph, target answers and an anonymized system output, they were asked to rate

the quality of the output by answering the following three questions: i) is this generated

question syntactically correct? ii) is this generated question semantically correct? and iii) is

this generated question relevant to the KG subgraph and target answers? For each evalua-

tion question, the rating scale is from 1 to 5 where a higher score means better quality (i.e.,

1: Poor, 2: Marginal, 3: Acceptable, 4: Good, 5: Excellent). Responses from all evaluators

were collected and averaged.

5.3.3 Model Settings

We keep and fix the 300-dim GloVe [273] vectors for those words that occur more than

twice in the training set. The dimensions of answer markup embeddings are set to 32 and

24 for WQ and PQ, respectively. We set the hidden state size of BiLSTM to 150 so that the

concatenated state size for both directions is 300. The size of all other hidden layers is set

to 300. We apply a variational dropout [288] rate of 0.4 after word embedding layers and

0.3 after RNN layers. The label smoothing ratio is set to 0.2. The number of GNN hops is

set to 4. During training, in each epoch, we set the initial teacher forcing probability to 0.8

and exponentially increase it to 0.8∗0.9999i where i is the training step. In addition, partial

teacher forcing is adopted, which means that when generating a sequence, some steps can be

teacher forced and some not. We set γ in the mixed loss function to 0.99. We use Adam [274]

as the optimizer. The learning rate is set to 0.001 in the pretraining stage. In the fine-tuning

stage, we set the learning rate to 0.00001 and 0.00002 for WQ and PQ, respectively. We

reduce the learning rate by a factor of 0.5 if the validation BLEU-4 score stops improving

for three epochs. We stop the training when no improvement is seen for 10 epochs. We clip

71

Table 5.2: Automatic evaluation results on the WQ and the PQ test sets.

Method
WQ PQ

BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L
L2A 6.01 25.24 26.95 17.00 19.72 50.38
Transformer 8.94 13.79 32.63 56.43 43.45 73.64
MHQG+AE 11.57 29.69 35.53 25.99 33.16 58.94
G2S+AE 29.45 30.96 55.45 61.48 44.57 77.72
G2Sedge +AE 29.40 31.12 55.23 59.59 44.70 75.20

the gradient at length 10. The batch size is set to 30. The beam search width is set to 5.

All hyperparameters are tuned on the development set. Experiments were conducted on a

machine which has an Intel i7-2700K CPU and an Nvidia Titan Xp GPU with 16GB RAM.

5.3.4 Experimental Results

Table 5.3: Human evaluation results (± standard deviation) on the WQ test
set.

Method Syntactic Semantic Relevant Overall
Transformer 4.53 (0.18) 4.58 (0.22) 2.65 (0.57) 3.92 (0.24)
G2S+AE 4.18 (0.30) 4.30 (0.27) 4.26 (0.34) 4.25 (0.26)
Ground-truth 4.30 (0.15) 4.50 (0.18) 4.32 (0.32) 4.38 (0.19)

Table 5.2 shows the evaluation results comparing our proposed models against other

state-of-the-art baseline methods on WQ and PQ test sets. As we can see, our models out-

perform all baseline methods by a large margin on both benchmarks. Besides, we can clearly

see the advantages of GNN-based encoders for modeling KG subgraphs, by comparing our

model with RNN-based (i.e., L2A) and Transformer-based (i.e., Transformer, MHQG+AE)

baselines. Compared to our Graph2Seq model, both RNN-based and Transformer-based

baselines ignore the explicit graph structure of a KG subgraph, which leads to degraded

performance. Interestingly, the Transformer baseline performs reasonably well on PQ, but

dramatically fails on WQ. We speculate this is because PQ is more friendly to sequential

models such as Transformer as the KG subgraph in PQ is more like path-structure while the

one in WQ is more like tree-structure.

We also compare two variants of our model (i.e., G2S vs. G2Sedge) for handling multi-

relational graphs. As shown in Table 5.2, directly applying the BiGGNN encoder to a Levi

72

Table 5.4: Ablation study on the WQ and the PQ test sets.

Method
WQ PQ

BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L
G2S+AE 29.45 30.96 55.45 61.48 44.57 77.72
G2S 28.43 30.13 54.44 60.68 44.07 75.94
G2S w/o copy 22.95 26.99 51.05 57.10 42.66 74.29

graph which is converted from a KG subgraph works quite well. The proposed BiGGNNedge

model can directly handle multi-relational graphs without modifying the input graph. How-

ever, it performs slightly worse than the Levi graph solution. We can improve the modeling

power of BiGGNNedge by updating edge embeddings in the message passing process and

attending to edges in the attention mechanism. We leave these extensions as future work.

Human evaluation and error analysis. We conduct a human evaluation study to assess

the quality of the questions generated by our model, the Transformer baseline, and the

ground-truth data in terms of syntax, semantics and relevance metrics. In addition, an

overall score is computed for each example by taking the average of the three scores. As shown

in Table 5.3, overall, we can see that our model achieves good results even compared to the

ground-truth, and outperforms the Transformer baseline. Interestingly, we observe that the

Transformer baseline gets high syntactic and semantic scores, but very poor relevant scores.

After manually examining some generated questions, we noticed that it generates many

fluent and meaningful questions that are by no means relevant to the given KG subgraph.

However, our model is able to generate more relevant questions possibly by better capturing

the KG semantics and the answer information. Our error analysis shows that main errors of

our model occur in repeated words and grammatical errors in generated questions.

5.3.5 Ablation Study

As shown in Table 5.4, we perform an ablation study to assess the performance impacts

of different model components. First of all, the node-level copying mechanism contributes a

lot to the overall model performance. By turning it off, we observe significant performance

drops on both benchmarks. This verifies our assumption that when generating questions from

a KG subgraph, one usually directly copies named entities from the input KG subgraph to the

output question. Besides, the answer information is also important for generating relevant

questions. Even with the simple answer markup technique, we can see the performance boost

73

on both benchmarks.

5.3.6 Model Analysis

Effect of node/edge embedding initialization. We empirically compare two different

ways of initializing node/edge embeddings when applying the Graph2Seq model. As shown

in Table 5.5, encoding nodes and edges based on word embeddings of their textual attributes

works better than based on their KG embeddings. This might be because it is difficult for

a NN-based model to learn the gap between KG embeddings on the encoder side and word

embeddings on the decoder side. With the word embedding-based encoding strategy, it is

relatively easier for a model to learn the mapping from the input KG subgraph to the output

NL question. It also seems that modeling local dependency within the subgraph without

utilizing the global KG information is enough for generating meaningful questions from a

KG subgraph.

Table 5.5: Effect of node/edge initial embeddings on the WQ test set.

Method BLEU-4 METEOR ROUGE-L
w/ word emb. 28.43 30.13 54.44
w/ KG emb. 22.80 25.85 48.93

Table 5.6: Impact of directionality for G2S+AE on the PQ test set.

Method BLEU-4 METEOR ROUGE-L
Bidirectional 61.48 44.57 77.72
Forward 59.59 42.72 75.82
Backward 59.12 42.66 75.03

Table 5.7: Results of RL-based G2S+AE on the WQ test set.

Method BLEU-4 METEOR ROUGE-L
G2S+AE 29.45 30.96 55.45
G2S+AE+RL 29.80 31.29 55.51

Impact of directionality on GNN encoder. As show in Table 5.6, we compare the

performance of bidirectional Graph2Seq with unidirectional Graph2Seq. We observe that

performing unidirectional message passing degrades the performance.

74

Table 5.8: Results of RL-based G2S+AE on the PQ test set.

Method BLEU-4 METEOR ROUGE-L
G2S+AE 61.48 44.57 77.72
G2S+AE+RL 59.21 44.47 77.35

Fig. 5.2: Effect of the number of GNN hops for G2S+AE on the PQ test set.

Results on training the model with a hybrid objective. Table 5.7 and Table 5.8

show the results of training our proposed G2S+AE model with a hybrid objective combining

both cross-entropy loss and RL loss. While the RL-based training strategy boosts the model

performance on WQ, it does not help the model training on PQ.

Effect of the number of GNN hops. Fig. 5.2 shows the impact of the number of

GNN hops when applying a GNN-based encoder to encode the KG subgraph in WQ. It

indicates that increasing the number of GNN hops can boost the model performance until

some optimal value.

5.3.7 Case Study

As shown in Table 5.9, we conduct a case study to examine the quality of generated

questions using different ablated systems. First of all, by initializing node/edge embeddings

with KG embeddings, the model fails to generate reasonable questions. Besides, with the

75

Fig. 5.3: Performance of QG-driven KBQA method under different proportions
of training data.

node-level copying mechanism, the model is able to directly copy the entity name “giza

necropolis” into the output question. Last, incorporating the answer information helps

generate more relevant and specific questions.

Table 5.9: Generated questions on the WQ test set. Target answers are
underlined. For the sake of brevity, we only display the lowest level

of the predicate hierarchy.

KG subgraph: (Egypt, administrative divisions, Cairo), (Giza Necropolis,
containedby, Egypt)
Gold: what country has the city of cairo and is home of giza necropolis ?
G2S w/ KG emb.: what country that contains cairo has cairo as its province ?
G2S w/o copy: where is the giza giza located in that has cairo ?
G2S: where is the giza necropolis located in that contains cairo ?
G2S+AE: what country that contains cairo is the location of giza necropolis ?

5.3.8 QG-Driven Data Augmentation for QA

One of the most important applications of QG is to generate more training data for

QA tasks. In this section, we use our proposed QG model to generate more questions for

training KBQA methods. We use WQ as our KBQA benchmark, and randomly split it to

40%/20%/40% (train/dev/test) examples. As for the KBQA baseline, we use the state-of-

76

the-art KBQA model called BAMnet [97] which directly retrieves answers from a KG by

mapping questions and candidate answers into a joint embedding space. In order to examine

the effect of QG-driven data augmentation on the KBQA task, we compare the BAMnet

baseline with its two data augmentation variants, namely, BAMnet w/ Transformer and

BAMnet w/ G2S+AE. More specifically, the BAMnet baseline is trained only on the part

(i.e., x% of the whole training data) where gold questions are available, while the other two

variants are trained on the combination of the gold questions and the questions automatically

generated by two QG models. Note that given x% training data, we randomly split it to

80%/20% (train/dev) for training a QG model.

We gradually increase the proportion (i.e., x%) of the training data used for train-

ing KBQA models, and report the F1 score performance of the above three KBQA model

variants. Here F1 score measures the overlap between the predicted and ground-truth an-

swer set. Fig. 5.3 shows the results on improving the BAMnet baseline with automatically

generated questions. Interestingly, both QG models consistently help improve the KBQA

performance when varying x% training data, and the performance boost is the most signif-

icant when training data is scarce. Notably, our G2S+AE model consistently outperforms

the Transformer model in improving the KBQA performance.

5.4 Conclusion and Future Work

In this paper, we introduced a novel bidirectional Graph2Seq model for the KG-QG

task. A novel node-level copying mechanism was proposed to allow directly copying node

attributes from the KG subgraph to the output question. We explored different ways of

initializing node/edge embeddings and handling multi-relational graphs. Our model outper-

forms existing methods by a significant margin on both WQ and PQ benchmarks.

Future directions include exploring effective ways of initializing node/edge embeddings

and utilizing answer information.

CHAPTER 6

NATURAL QUESTION GENERATION FROM TEXT

6.1 Overview

Natural question generation (QG) aims to generate questions from a text passage

and an answer. Previous works on QG either (i) ignore the rich structure information

hidden in text, (ii) solely rely on cross-entropy loss that leads to issues like exposure bias

and inconsistency between train/test measurement, or (iii) fail to fully exploit the answer

information.

To address these limitations, in this work, we present a novel reinforcement learning

(RL) [111] based generator-evaluator architecture that aims to: i) make full use of rich

hidden structure information beyond the simple word sequence; ii) generate syntactically

and semantically valid text while maintaining the consistency of train/test measurement;

iii) model explicitly the global interactions of semantic relationships between passage and

answer at both word-level and contextual-level.

In particular, to achieve the first goal, we explore two different means to either con-

struct a syntax-based static graph or a semantics-aware dynamic graph from the text se-

quence, as well as its rich hidden structure information. Then, we design a graph-to-sequence

(Graph2Seq) [198], [227], [230]–[233] model based generator that encodes the graph represen-

tation of a text passage and decodes a question sequence using a Recurrent Neural Network

(RNN) [172]. Our Graph2Seq model is based on a novel bidirectional gated graph neural

network, which extends the gated graph neural network [197] by considering both incoming

and outgoing edges, and fusing them during the graph embedding learning. To achieve the

second goal, we design a hybrid evaluator which is trained by optimizing a mixed objective

function that combines both cross-entropy and RL loss. We use not only discrete evaluation

metrics like BLEU, but also semantic metrics like word mover’s distance [289] to encour-

age both syntactically and semantically valid text generation. To achieve the third goal,

we propose a novel Deep Alignment Network (DAN) for effectively incorporating answer

information into the passage at multiple granularity levels.

Our main contributions are as follows:

This chapter previously appeared as: Y. Chen, L. Wu, and M. J. Zaki, “Reinforcement learning based
graph-to-sequence model for natural question generation,” in Proc. 8th Int. Conf. Learn. Representations,
Apr. 26-30, 2020. [Online]. Available: https://openreview.net/forum?id=HygnDhEtvr

77

78

• We propose a novel RL-based Graph2Seq model for natural question generation. To

the best of our knowledge, we are the first to introduce the Graph2Seq architecture for

the QG task.

• We design a novel Bidirectional Gated Graph Neural Network (BiGGNN) to process

directed passage graphs.

• We design an effective Deep Alignment Network (DAN) for incorporating answer in-

formation into the passage with multiple granularity levels.

• We design a two-stage training strategy to train the proposed model with both cross-

entropy loss and RL loss.

• We explore both static and dynamic ways of constructing graph from text and are the

first to systematically investigate their performance impacts on a GNN encoder.

• The proposed model is end-to-end trainable, achieves new state-of-the-art scores, and

outperforms existing methods by a significant margin on the standard SQuAD bench-

mark for QG. Our human evaluation study also corroborates that the questions gen-

erated by our model are more natural (semantically and syntactically) compared to

other baselines.

6.2 Approach: RL-based Graph2Seq Model for Natural Question

Generation

In this section, we define the question generation task, and then present our RL-based

Graph2Seq model for natural question generation. We first motivate the design, and then

present the details of each component as shown in Fig. 6.1.

6.2.1 Problem Formulation

The goal of question generation is to generate natural language questions based on

a given form of data, such as knowledge base triples or tables [61], sentences [73], [75], or

images [57], where the generated questions need to be answerable from the input data. In

this work, we focus on QG from a given text passage, along with a target answer.

We assume that a text passage is a collection of word tokens Xp = {xp1, x
p
2, ..., x

p
N},

and a target answer is also a collection of word tokens Xa = {xa1, xa2, ..., xaL}. The task of

79

Fig. 6.1: Overall architecture of the proposed model. Best viewed in color.

natural question generation is to generate the best natural language question consisting of

a sequence of word tokens Ŷ = {y1, y2, ..., yT} which maximizes the conditional likelihood

Ŷ = arg maxY P (Y |Xp, Xa). Here N , L, and T are the lengths of the passage, answer and

question, respectively. We focus on the problem setting where we have a set of passage (and

answers) and target questions pairs, to learn the mapping; existing QG approaches [73], [75],

[87], [90] make a similar assumption.

6.2.2 Deep Alignment Network

Answer information is crucial for generating relevant and high quality questions from a

passage. Unlike previous methods that neglect potential semantic relations between passage

and answer words, we explicitly model the global interactions among them in the embed-

ding space. To this end, we propose a novel Deep Alignment Network (DAN) component

for effectively incorporating answer information into the passage with multiple granularity

levels. Specifically, we perform attention-based soft-alignment at the word-level, as well

as at the contextual-level, so that multiple levels of alignments can help learn hierarchical

representations.

Let Xp ∈ RF×N and X̃p ∈ RF̃p×N denote two embeddings associated with passage

80

Fig. 6.2: The attention-based soft-alignment mechanism.

text. Similarly, let Xa ∈ RF×L and X̃a ∈ RF̃a×L denote two embeddings associated with

answer text. Conceptually, as shown in Fig. 6.2, the soft-alignment mechanism consists of

three steps: i) compute the attention score βi,j for each pair of passage word xpi and answer

word xaj : ii) multiply the attention matrix β with the answer embeddings X̃a to obtain

the aligned answer embeddings Hp for the passage; iii) concatenate the resulting aligned

answer embeddings Hp with the passage embeddings X̃p to get the final passage embeddings

H̃p ∈ R(F̃p+F̃a)×N . Notably, the passage (or answer) embeddings for computing the attention

matrix can be same with or different from the passage (or answer) embeddings for computing

the final embeddings, as we will discuss below.

Formally, we define our soft-alignment function as following:

H̃p = Align(Xp,Xa, X̃p, X̃a) (6.1a)

= CAT(X̃p; Hp) (6.1b)

= CAT(X̃p; X̃aβT) (6.1c)

where the matrix H̃p is the final passage embedding, the function CAT is a simple concate-

nation operation, and β is a N × L attention score matrix, computed by

β ∝ exp
(

ReLU(WXp)TReLU(WXa)
)

(6.2)

where W ∈ Rd×F is a trainable weight matrix, with d being the hidden state size and ReLU

is the rectified linear unit [281]. After introducing the general soft-alignment mechanism, we

next introduce how we do soft-alignment at both word-level and contextual-level.

81

6.2.2.1 Word-level Alignment

In the word-level alignment stage, we first perform a soft-alignment between the passage

and the answer based only on their pretrained GloVe embeddings and compute the final

passage embeddings by H̃p = Align(Gp,Ga, [Gp; Bp; Lp],Ga), where Gp, Bp, and Lp are

the corresponding GloVe embedding [273], BERT embedding [123], and linguistic feature

(i.e., case, NER and POS) embedding of the passage text, respectively. Then a bidirectional

LSTM [172] is applied to the final passage embeddings H̃p = {h̃p
i }Ni=1 to obtain contextualized

passage embeddings Hp ∈ RF×N .

On the other hand, for the answer text Xa, we simply concatenate its GloVe embedding

Ga and its BERT embedding Ba to obtain its word embedding matrix Ha ∈ Rd′×L. Another

BiLSTM is then applied to the concatenated answer embedding sequence to obtain the

contextualized answer embeddings Ha ∈ RF×L.

6.2.2.2 Contextual-level Alignment

In the contextual-level alignment stage, we perform another soft-alignment based on the

contextualized passage and answer embeddings. Similarly, we compute the aligned answer

embedding, and concatenate it with the contextualized passage embedding to obtain the

final passage embedding matrix Align([Gp; Bp; Hp], [Ga; Ba; Ha],Hp,Ha). Finally, we apply

another BiLSTM to the above concatenated embedding to get a F ×N passage embedding

matrix X.

6.2.3 Bidiectional Graph-to-Sequence Generator

While RNNs are good at capturing local dependencies among consecutive words in text,

GNNs have been shown to better utilize the rich hidden text structure information such as

syntactic parsing [232] or semantic parsing [233], and can model the global interactions

(relations) among sequence words to further improve the representations. Therefore, unlike

most of the existing methods that rely on RNNs to encode the input passage, we first

construct a passage graph G from text where each passage word is treated as a graph node,

and then employ a novel Graph2Seq model to encode the passage graph (and answer), and

to decode the question sequence.

82

6.2.3.1 Passage Graph Construction

Existing GNNs assume a graph structured input and directly consume it for computing

the corresponding node embeddings. However, we need to construct a graph from the text.

Although there are early attempts on constructing a graph from a sentence [232], there is

no clear answer as to the best way of representing text as a graph. We explore both static

and dynamic graph construction approaches, and systematically investigate the performance

differences between these two methods in the experimental section.

Syntax-based static graph construction. We construct a directed and unweighted pas-

sage graph based on dependency parsing. For each sentence in a passage, we first get its

dependency parse tree. We then connect neighboring dependency parse trees by connecting

those nodes that are at a sentence boundary and next to each other in text.

Semantics-aware dynamic graph construction. We dynamically build a directed and

weighted graph to model semantic relationships among passage words. We make the process

of building such a graph depend on not only the passage, but also on the answer. The graph

construction procedure consists of three steps: i) we compute a dense adjacency matrix A

for the passage graph by applying self-attention to the word-level passage embeddings H̃p,

ii) considering that a fully connected passage graph is not only computationally expensive

but also might introduce noise (i.e., unimportant edges), a kNN-style graph sparsification

strategy [98] is adopted to obtain a sparse adjacency matrix Ā, where we only keep the

K nearest neighbors (including itself) as well as the associated attention scores (i.e., the

remaining attentions scores are masked off) for each node; and iii) inspired by BiLSTM over

LSTM, we also compute two normalized adjacency matrices Aa and A` according to their

incoming and outgoing directions, by applying softmax operation on the resulting sparse

adjacency matrix Ā and its transpose, respectively.

A = ReLU(UH̃p)T ReLU(UH̃p) (6.3a)

Ā = kNN(A) (6.3b)

Aa,A` = softmax({Ā, ĀT}) (6.3c)

where U is a d×(F̃p+F̃a) trainable weight matrix. Note that the supervision signal is able to

back-propagate through the graph sparsification operation as the K nearest attention scores

are kept.

83

6.2.3.2 Bidirectional Gated Graph Neural Networks

To effectively learn the graph embeddings from the constructed text graph, we pro-

pose a novel Bidirectional Gated Graph Neural Network (BiGGNN) which extends Gated

Graph Sequence Neural Networks [197] by learning node embeddings from both incoming

and outgoing edges in an interleaved fashion when processing the directed passage graph.

Similar idea has also been exploited in [198], which extended another popular variant of

GNNs - GraphSAGE [196]. However, one of key difference between our BiGGNN and their

bidirectional GraphSAGE is that we fuse the intermediate node embeddings from both in-

coming and outgoing directions in every iteration, whereas their model simply learns the

node embeddings of each direction independently and concatenates them in the final step.

In BiGGNN, node embeddings are initialized to the passage embeddings X returned

by DAN. The same set of network parameters are shared at every hop of computation.

At each computation hop, for every node in the graph, we apply an aggregation function

which takes as input a set of incoming (or outgoing) neighboring node vectors and outputs a

backward (or forward) aggregation vector. For the syntax-based static graph, we use a mean

aggregator for simplicity although other operators such as max or attention [204] could also

be employed,

hk
Na(v)

= MEAN({hk−1
v } ∪ {hk−1

u ,∀u ∈ Na(v)}) (6.4a)

hk
N`(v)

= MEAN({hk−1
v } ∪ {hk−1

u ,∀u ∈ N`(v)}) (6.4b)

For the semantics-aware dynamic graph we compute a weighted average for aggregation

where the weights come from the normalized adjacency matrices Aa and A`, defined as,

hk
Na(v)

=
∑

∀u∈Na(v)

aav,uh
k−1
u (6.5a)

hk
N`(v)

=
∑

∀u∈N`(v)

a`v,uh
k−1
u (6.5b)

While [198] learn separate node embeddings for both directions independently, we opt to

fuse information aggregated in two directions at each hop, which we find works better in

general.

hk
N(v)

= Fuse(hk
Na(v)

,hk
N`(v)

) (6.6)

84

We design the fusion function as a gated sum of two information sources,

Fuse(a,b) = z� a + (1− z)� b (6.7a)

z = σ(Wz[a; b; a� b; a− b] + bz) (6.7b)

where � is the component-wise multiplication, σ is a sigmoid function, and z is a gating

vector.

Finally, a Gated Recurrent Unit (GRU) [78] is used to update the node embeddings

by incorporating the aggregation information.

hk
v = GRU(hk−1

v ,hk
N(v)

) (6.8)

After n hops of GNN computation, where n is a hyperparameter, we obtain the final state

embedding hn
v for node v. To compute the graph-level embedding, we first apply a linear

projection to the node embeddings, and then apply max-pooling over all node embeddings

to get a d-dim vector hG.

6.2.3.3 RNN Decoder

On the decoder side, we adopt the same model architecture as other state-of-the-art

Seq2Seq models where an attention-based [79], [140] LSTM decoder with copy [154], [155] and

coverage mechanisms [41], [156] is employed. The decoder takes the graph-level embedding

hG followed by two separate fully-connected layers as initial hidden states (i.e., c0 and s0)

and the node embeddings {hn
v ,∀v ∈ G} as the attention memory, and generates the output

sequence one word at a time.

More specifically, at each decoding step t, an attention mechanism learns to attend to

the most relevant words in the input sequence, and computes a context vector h∗t based on

the current decoding state st, the current coverage vector ct and the attention memory. In

addition, the generation probability pgen ∈ [0, 1] is calculated from the context vector h∗t ,

the decoder state st and the decoder input yt−1. Next, pgen is used as a soft switch to choose

between generating a word from the vocabulary, or copying a word from the input sequence.

We dynamically maintain an extended vocabulary which is the union of the usual vocabulary

and all words appearing in a batch of source examples (i.e., passages and answers). Finally,

in order to encourage the decoder to utilize the diverse components of the input sequence, a

85

coverage mechanism is applied. At each step, we maintain a coverage vector ct, which is the

sum of attention distributions over all previous decoder time steps. A coverage loss is also

computed to penalize repeatedly attending to the same locations of the input sequence.

6.2.4 Hybrid Evaluator

It has been observed that optimizing such cross-entropy based training objectives for

sequence learning does not always produce the best results on discrete evaluation metrics [81],

[109], [110]. There are two main limitations of this optimizing method: i) exposure bias,

meaning that a model has access to the ground-truth sequence up to the next token during

training but does not have such supervision when testing, resulting in accumulated errors; ii)

evaluation discrepancy between training and testing, meaning that a model is optimized with

cross-entropy loss during training while evaluated with discrete evaluation metrics during

testing. To tackle these issues, some recent QG approaches [84], [89] directly optimize

evaluation metrics using REINFORCE. We further use a mixed objective function with both

syntactic and semantic constraints for guiding text generation. In particular, we present a

hybrid evaluator with a mixed objective function that combines both cross-entropy loss and

RL loss in order to ensure the generation of syntactically and semantically valid text.

For the RL part, we employ the self-critical sequence training (SCST) algorithm [283]

to directly optimize the evaluation metrics. SCST is an efficient REINFORCE algorithm

that utilizes the output of its own test-time inference algorithm to normalize the rewards it

experiences. In SCST, at each training iteration, the model generates two output sequences:

the sampled output Y s, produced by multinomial sampling, that is, each word yst is sampled

according to the likelihood P (yt|X, y<t) predicted by the generator, and the baseline output

Ŷ , obtained by greedy search, that is, by maximizing the output probability distribution at

each decoding step. We define r(Y) as the reward of an output sequence Y , computed by

comparing it to corresponding ground-truth sequence Y ∗ with some reward metrics. The

loss function is defined as:

Lrl = (r(Ŷ)− r(Y s))
∑
t

logP (yst |X, ys<t) (6.9)

As we can see, if the sampled output has a higher reward than the baseline one, we maximize

its likelihood, and vice versa.

86

One of the key factors for RL is to pick the proper reward function. To take syntactic

and semantic constraints into account, we consider the following metrics as our reward

functions:

Evaluation metric as reward function. We use one of our evaluation metrics, BLEU-4,

as our reward function feval, which lets us directly optimize the model towards the evaluation

metrics.

Semantic metric as reward function. One drawback of some evaluation metrics like

BLEU is that they do not measure meaning, but only reward systems that have exact n-gram

matches in the reference system. To make our reward function more effective and robust, we

additionally use word mover’s distance (WMD) as a semantic reward function fsem. WMD

is the state-of-the-art approach to measure the dissimilarity between two sentences based on

word embeddings [289]. Following [290], we take the negative of the WMD distance between

a generated sequence and the ground-truth sequence and divide it by the sequence length as

its semantic score.

We define the final reward function as r(Y) = feval(Y, Y
∗) + αfsem(Y, Y ∗) where α is a

scalar.

6.2.5 Training and Testing

We train our model in two stages. In the first state, we train the model using regular

cross-entropy loss, defined as,

Llm =
∑
t

− logP (y∗t |X, y∗<t) + λ covlosst (6.10)

where y∗t is the word at the t-th position of the ground-truth output sequence and covlosst

is the coverage loss defined as
∑

imin(ati, c
t
i), with ati being the i-th element of the attention

vector over the input sequence at time step t. Scheduled teacher forcing [282] is adopted

to alleviate the exposure bias problem. In the second stage, we fine-tune the model by

optimizing a mixed objective function combining both cross-entropy loss and RL loss, defined

as,

L = γLrl + (1− γ)Llm (6.11)

where γ is a scaling factor controling the trade-off between cross-entropy loss and RL loss.

During the testing phase, we use beam search to generate final predictions.

87

6.3 Experiments

We evaluate our proposed model against state-of-the-art methods on the SQuAD

dataset [149]. Our full models have two variants G2Ssta+BERT+RL and G2Sdyn+BERT+RL

which adopts static graph construction or dynamic graph construction, respectively. The im-

plementation of our model is publicly available at https://github.com/hugochan/

RL-based-Graph2Seq-for-NQG.

6.3.1 Baseline Methods

We compare our models against the following baseline methods in our experiments: i)

Transformer [108], ii) SeqCopyNet [291], iii) NQG++ [74], iv) MPQG+R [89], v) AFPQA

[91], vi) ASs2s [90], vii) s2sa-at-mp-gsa [87], and viii) CGC-QG [88]. Experiments on base-

lines followed by * are conducted using released code. Results of other baselines are taken

from the corresponding papers, with unreported metrics marked as –. Detailed descriptions

of the baselines are provided next.

Transformer [108] We included a Transformer-based Seq2Seq model augmented with at-

tention and copy mechanisms. We used the open source implementation provided by the

OpenNMT [284] library and trained the model from scratch. Surprisingly, this baseline

performed very poorly on the benchmarks (as we will see later) even though we conducted

moderate hyperparameter search and trained the model for a large amount of epochs. We

suspect this might be partially because this method is very sensitive to hyperparameters

as reported by [284] and probably data-hungry on this task. We conjecture that better

performance might be expected by extensively searching the hyperparameters and using a

pretrained transformer model.

SeqCopyNet [291] proposed an extension to the copy mechanism which learns to copy not

only single words but also sequences from the input sentence.

NQG++ [74] proposed an attention-based Seq2Seq model equipped with a copy mechanism

and a feature-rich encoder to encode answer position, POS and NER tag information.

MPQG+R [89] proposed an RL-based Seq2Seq model equipped with a multi-perspective

matching encoder to incorporate answer information. Copy and coverage mechanisms are

applied.

https://opennmt.net/OpenNMT-py/FAQ.html

88

AFPQA [91] consists of an answer-focused component which generates an interrogative

word matching the answer type, and a position-aware component which is aware of the

position of the context words when generating a question by modeling the relative distance

between the context words and the answer.

ASs2s [90] proposed an answer-separated Seq2Seq model which treats the passage and the

answer separately.

s2sa-at-mp-gsa [87] proposed a model which contains a gated attention encoder and a

maxout pointer decoder to tackle the challenges of processing long input sequences. For fair

comparison, we report the results of the sentence-level version of their model to match with

our settings.

CGC-QG [88] proposed a multi-task learning framework to guide the model to learn the

accurate boundaries between copying and generation.

6.3.2 Data and Metrics

SQuAD contains more than 100K questions posed by crowd workers on 536 Wikipedia

articles. Since the test set of the original SQuAD is not publicly available, the accessi-

ble parts (≈90%) are used as the entire dataset in our experiments. For fair comparison

with previous methods, we evaluated our model on both data split-1 [75] that contains

75,500/17,934/11,805 (train/development/test) examples and data split-2 [74] that con-

tains 86,635/8,965/8,964 examples.

Following previous works, we use BLEU-4 [113], METEOR [114], ROUGE-L [115] and

Q-BLEU1 [118] as our evaluation metrics. Initially, BLEU-4 and METEOR were designed

for evaluating machine translation systems and ROUGE-L was designed for evaluating text

summarization systems. Recently, Q-BLEU1 was designed for better evaluating question

generation systems, which was shown to correlate significantly better with human judgments

compared to existing metrics.

Besides automatic evaluation, we also conducted a small-scale (i.e., 50 random exam-

ples per system) human evaluation on the split-2 data. We asked 5 human evaluators to

give feedback on the quality of questions generated by a set of anonymized competing sys-

tems. In each example, given a triple containing a source passage, a target answer and an

https://www.cs.rochester.edu/˜lsong10/downloads/nqg data.tgz
https://res.qyzhou.me/redistribute.zip

89

anonymised system output, they were asked to rate the quality of the output by answering

the following three questions: i) is this generated question syntactically correct? ii) is this

generated question semantically correct? and iii) is this generated question relevant to the

passage? For each evaluation question, the rating scale is from 1 to 5 where a higher score

means better quality (i.e., 1: Poor, 2: Marginal, 3: Acceptable, 4: Good, 5: Excellent).

Responses from all evaluators were collected and averaged.

6.3.3 Model Settings

We keep and fix the 300-dim GloVe vectors for the most frequent 70,000 words in the

training set. We compute the 1024-dim BERT embeddings on the fly for each word in text

using a (trainable) weighted sum of all BERT layer outputs. The embedding sizes of case,

POS and NER tags are set to 3, 12 and 8, respectively. We set the hidden state size of

BiLSTM to 150 so that the concatenated state size for both directions is 300. The size of

all other hidden layers is set to 300. We apply a variational dropout [288] rate of 0.4 after

word embedding layers and 0.3 after RNN layers. We set the neighborhood size to 10 for

dynamic graph construction. The number of GNN hops is set to 3. During training, in each

epoch, we set the initial teacher forcing probability to 0.75 and exponentially increase it to

0.75 ∗ 0.9999i where i is the training step. In addition, partial teacher forcing is adopted,

which means that when generating a sequence, some steps can be teacher forced and some

not. We set α in the reward function to 0.1, γ in the mixed loss function to 0.99, and

the coverage loss ratio λ to 0.4. The beam search width is set to 5. During beam search,

we set the minimal and maximal output sequence lengths as 4 and 40, respectively. The

maximal number of decoding steps is set to 41. We use Adam [274] as the optimizer, and the

learning rate is set to 0.001 in the pretraining stage and 0.00001 in the fine-tuning stage. We

reduce the learning rate by a factor of 0.5 if the validation BLEU-4 score stops improving

for three epochs. We stop the training when no improvement is seen for 10 epochs. We clip

the gradient at length 10. The batch size is set to 60 and 50 on data split-1 and split-2,

respectively. All hyperparameters are tuned on the development set.

6.3.4 Experimental Results

Table 6.1 shows the automatic evaluation results comparing our proposed models

against other state-of-the-art baseline methods. First of all, we can see that both of our full

90

Table 6.1: Automatic evaluation results on the SQuAD test set.

Methods
Split-1 Split-2

BLEU-4 METEOR ROUGE-L Q-BLEU1 BLEU-4 METEOR ROUGE-L Q-BLEU1

Transformer 2.56 8.98 26.01 16.70 3.09 9.68 28.86 20.10
SeqCopyNet – – – – 13.02 – 44.00 –
NQG++ – – – – 13.29 – – –
MPQG+R* 14.39 18.99 42.46 52.00 14.71 18.93 42.60 50.30
AFPQA – – – – 15.64 – – –
s2sa-at-mp-gsa 15.32 19.29 43.91 – 15.82 19.67 44.24 –
ASs2s 16.20 19.92 43.96 – 16.17 – – –
CGC-QG – – – – 17.55 21.24 44.53 –
G2Sdyn+BERT+RL 17.55 21.42 45.59 55.40 18.06 21.53 45.91 55.00
G2Ssta+BERT+RL 17.94 21.76 46.02 55.60 18.30 21.70 45.98 55.20

models G2Ssta+BERT+RL and G2Sdyn+BERT+RL achieve the new state-of-the-art scores

on both data splits and consistently outperform previous methods by a significant margin.

This highlights that our RL-based Graph2Seq model, together with the deep alignment net-

work, successfully addresses the three issues we highlighted in Section 6.1. Notably, some

previous state-of-the-art methods relied on many heuristic rules and ad-hoc strategies. For

instance, CGC-QG [88] annotated clue words in the passage based on word frequency and

overlapping, masked out low-frequency passage word embeddings, and reduced the target

output vocabulary to boost the model performance. ASs2s [90] replaced the target answer

in the original passage with a special token. However, our proposed model does not rely on

any hand-crafted rules or ad-hoc strategies, and is fully end-to-end trainable. Between these

two variants, G2Ssta+BERT+RL outperforms G2Sdyn+BERT+RL on all the metrics.

As shown in Table 6.2, we conducted a human evaluation study to assess the quality

of the questions generated by our model, the baseline method MPQG+R, and the ground-

truth data in terms of syntax, semantics and relevance metrics. We can see that our best

performing model achieves good results even compared to the ground-truth, and outperforms

the strong baseline method MPQG+R. Our error analysis shows that main syntactic error

occurs in repeated/unknown words in generated questions. Further, the slightly lower quality

on semantics also impacts the relevance.

91

Table 6.2: Human evaluation results (± standard deviation) on the SQuAD
split-2 test set.

Methods Syntactically correct Semantically correct Relevant
MPQG+R* 4.34 (0.15) 4.01 (0.23) 3.21 (0.31)
G2Ssta+BERT+RL 4.41 (0.09) 4.31 (0.12) 3.79 (0.45)
Ground-truth 4.74 (0.14) 4.74 (0.19) 4.25 (0.38)

6.3.5 Ablation Study

As shown in Table 6.3, we perform an ablation study to systematically assess the impact

of different model components (e.g., BERT, RL, DAN, and BiGGNN) for two proposed

full model variants (static vs dynamic) on the SQuAD split-2 test set. It confirms our

finding that syntax-based static graph construction (G2Ssta+BERT+RL) performs better

than semantics-aware dynamic graph construction (G2Sdyn+BERT+RL) in almost every

setting. However, it may be too early to conclude which one is the method of choice for QG.

On the one hand, an advantage of static graph construction is that useful domain knowledge

can be hard-coded into the graph, which can greatly benefit the downstream task. However,

it might suffer if there is a lack of prior knowledge for a specific domain knowledge. On

the other hand, dynamic graph construction does not need any prior knowledge about the

hidden structure of text, and only relies on the attention matrix to capture these structured

information, which provides an easy way to achieve a decent performance. One interesting

direction is to explore effective ways of combining both static and dynamic graphs.

By turning off the Deep Alignment Network (DAN), the BLEU-4 score of G2Ssta (sim-

ilarly for G2Sdyn) dramatically drops from 16.96% to 12.62%, which indicates the impor-

tance of answer information for QG and shows the effectiveness of DAN. This can also be

verified by comparing the performance between the DAN-enhanced Seq2Seq model (16.14

BLEU-4 score) and other carefully designed answer-aware Seq2Seq baselines such as NQG++

(13.29 BLEU-4 score), MPQG+R (14.71 BLEU-4 score) and AFPQA (15.82 BLEU-4 score).

Further experiments demonstrate that both word-level (G2Ssta w/ DAN-word only) and

contextual-level (G2Ssta w/ DAN-contextual only) answer alignments in DAN are helpful.

We can see the advantages of Graph2Seq learning over Seq2Seq learning on this task by

comparing the performance between G2Ssta and Seq2Seq. Compared to Seq2Seq based QG

methods that completely ignore hidden structure information in the passage, our Graph2Seq

based method is aware of more hidden structure information such as semantic similarity

92

Table 6.3: Ablation study on the SQuAD split-2 test set.

Methods BLEU-4 Methods BLEU-4
G2Sdyn+BERT+RL 18.06 G2Sdyn w/o feat 16.51
G2Ssta+BERT+RL 18.30 G2Ssta w/o feat 16.65
G2Ssta+BERT-fixed+RL 18.20 G2Sdyn w/o DAN 12.58
G2Sdyn+BERT 17.56 G2Ssta w/o DAN 12.62
G2Ssta+BERT 18.02 G2Ssta w/ DAN-word only 15.92
G2Ssta+BERT-fixed 17.86 G2Ssta w/ DAN-contextual only 16.07
G2Sdyn+RL 17.18 G2Ssta w/ GGNN-forward 16.53
G2Ssta+RL 17.49 G2Ssta w/ GGNN-backward 16.75
G2Sdyn 16.81 G2Ssta w/o BiGGNN, w/ Seq2Seq 16.14
G2Ssta 16.96 G2Ssta w/o BiGGNN, w/ GCN 14.47

between any pair of words that are not directly connected or syntactic relationships between

two words captured in a dependency parsing tree. In our experiments, we also observe

that doing both forward and backward message passing in the GNN encoder is beneficial.

Surprisingly, using GCN [193] as the graph encoder (and converting the input graph to an

undirected graph) does not provide good performance. In addition, fine-tuning the model

using REINFORCE can further improve the model performance in all settings (i.e., w/

and w/o BERT), which shows the benefits of directly optimizing the evaluation metrics.

Besides, we find that the pretrained BERT embedding has a considerable impact on the

performance and fine-tuning BERT embedding even further improves the performance, which

demonstrates the power of large-scale pretrained language models. Incorporating common

linguistic features (i.e., case, POS, NER) also helps the overall performance to some extent.

6.3.6 Case Study

In Table 6.4, we further show a few examples that illustrate the quality of generated

text given a passage under different ablated systems. As we can see, incorporating answer

information helps the model identify the answer type of the question to be generated, and

thus makes the generated questions more relevant and specific. Also, we find our Graph2Seq

model can generate more complete and valid questions compared to the Seq2Seq baseline. We

think it is because a Graph2Seq model is able to exploit the rich text structure information

better than a Seq2Seq model. Lastly, it shows that fine-tuning the model using REINFORCE

can improve the quality of the generated questions.

93

Table 6.4: Generated questions on SQuAD split-2 test set. Target answers are
underlined.

Passage: for the successful execution of a project , effective planning is essential .
Gold: what is essential for the successful execution of a project ?
G2Ssta w/o BiGGNN (Seq2Seq): what type of planning is essential for the project ?
G2Ssta w/o DAN: what type of planning is essential for the successful execution of a project ?
G2Ssta: what is essential for the successful execution of a project ?
G2Ssta+BERT: what is essential for the successful execution of a project ?
G2Ssta+BERT+RL: what is essential for the successful execution of a project ?
G2Sdyn+BERT+RL: what is essential for the successful execution of a project ?

Passage: the church operates three hundred sixty schools and institutions overseas .
Gold: how many schools and institutions does the church operate overseas ?
G2Ssta w/o BiGGNN (Seq2Seq): how many schools does the church have ?
G2Ssta w/o DAN: how many schools does the church have ?
G2Ssta: how many schools and institutions does the church have ?
G2Ssta+BERT: how many schools and institutions does the church have ?
G2Ssta+BERT+RL: how many schools and institutions does the church operate ?
G2Sdyn+BERT+RL: how many schools does the church operate ?

6.3.7 Sensitivity Analysis of Hyperparameters

To study the effect of the number of GNN hops, we conduct experiments on the G2Ssta

model on the SQuAD split-2 data. Fig. 6.3 shows that our model is not very sensitive to the

number of GNN hops and can achieve reasonably good results with various number of hops.

6.4 Conclusion and Future Work

We proposed a novel RL based Graph2Seq model for QG, where the answer information

is utilized by an effective Deep Alignment Network and a novel bidirectional GNN is proposed

to process the directed passage graph. Our two-stage training strategy benefits from both

cross-entropy based and REINFORCE based sequence training. We also explore both static

and dynamic graph construction from text, and systematically investigate and analyze the

performance difference between the two. On the SQuAD dataset, our method outperforms

existing methods by a significant margin and achieves the new state-of-the-art results.

Future directions include investigating more effective ways of automatically learning

graph structures from text and exploiting Graph2Seq models for question generation from

structured data like knowledge graphs or tables.

94

Fig. 6.3: Effect of the number of GNN hops.

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, we presented our work on question answering over different knowl-

edge sources including a knowledge base and free-form text. We identify and address three

main challenges of question answering, which include the lexical gap between natural lan-

guage questions and the underlying knowledge sources, complex reasoning and conversational

question answering. In addition, we presented our work on question generation which is a

dual task of question answering, and can be leveraged to help the QA tasks by providing

more training data. We identity and address three main challenges of question generation,

which include effect context modeling, target answer utilization and sequence learning model

training. Here, we briefly summarize our work and discuss the limitations.

In Chapter 3, we proposed a novel and effective information retrieval based approach

for the task of question answering over knowledge bases. The proposed BAMnet model is

able to perform multi-hop reasoning in a knowledge base and requires no external resources

and very few hand-crafted features. Experiments on a popular KBQA benchmark show

that our model significantly outperforms previous information retrieval based methods while

remaining competitive with handcrafted semantic parsing based methods. However, the

proposed model have several limitations. Although it can perform multi-hop reasoning in

a knowledge base, it cannot handle complex constraints (e.g., ordinal and aggregation con-

straints) and symbolic operations (e.g., comparison and quantitative operations). Besides,

it can only answer single-turn questions and is not aware of conversation context.

In Chapter 4, in order to capture conversation history more effectively in the task of

conversational machine reading comprehension, we proposed a novel graph neural network

based method which is able to model conversational flow in a dialog. On three widely-

used benchmarks, the proposed model shows superior performance compared to existing

state-of-the-art methods. Our interpretability analysis shows that our model can offer good

interpretability for the reasoning process. However, one limitation of the proposed model is

its incapability of performing complex reasoning since it is just doing sophisticated semantic

matching at its best. Moreover, in Chapter 4, we define conversation flow as a sequence

of latent states in the dialog. However, we did not learn explicit representations of the

95

96

conversation flow in a dialog, instead, we modeled it as changes of passage representations

between consecutive conversation turns. It is not clear what is the best way to represent or

model conversation flow.

In Chapter 5, in order to better capture the structure information of KG subgraphs,

we applied a bidirectional Graph2Seq model to encode the KG subgraph. Furthermore,

we proposed to enhance the RNN decoder with the novel node-level copying mechanism

to allow directly copying node attributes from the KG subgraph to the output question.

Both automatic and human evaluation results demonstrate that our model achieves new

state-of-the-art scores, outperforming existing methods by a significant margin on two QG

benchmarks. Experiments also show that our QG model can consistently benefit the QA

task as a mean of data augmentation. However, how to effectively utilize the target answer

information remains a open question. Our experiments show that a simple trick of incorpo-

rating the answer markup can help improve the model performance. It will be interesting

to see if we can further improve the performance by leveraging more advanced techniques of

utilizing answer information.

In Chapter 6, we proposed a reinforcement learning (RL) based Graph2Seq model for

QG from text. Our model consists of a Graph2Seq generator with a novel Bidirectional

Gated Graph Neural Network based encoder to embed the passage, and a hybrid evaluator

with a mixed objective combining both the cross-entropy loss and RL loss to ensure the

generation of syntactically and semantically valid text. We also introduce an effective Deep

Alignment Network for incorporating the answer information into the passage at both the

word and contextual levels. Our model is end-to-end trainable and achieves new state-

of-the-art scores, outperforming existing methods by a significant margin on the standard

SQuAD benchmark. Our experiments show that modeling the rich structure information

of the passage can improve the model performance. However, it is not clear which kind of

graph representation is best for the QG task. It will be interesting to conduct a thorough

comparative study on the performance impact of different kinds of static and dynamic graph

representation techniques on the QG task.

7.2 Future Work

Next, we discuss several future directions for our current work.

97

7.2.1 Question Answering

7.2.1.1 Complex Question Answering

As aforementioned, our proposed methods are limited in terms of the capability of

performing complex reasoning. Indeed, complex question answering is a very challenging yet

rewarding problem since making machines perform complex reasoning is a big step towards

human-level artificial intelligence.

Complex question answering as program induction. We believe that treating complex

question answering as a program induction problem is a generic and promising direction.

Considering the limitation of neural networks that everything must be embeded into a vector

and that they are incapable of performing precise program execution, combining neural

networks and symbolic methods is promising. While neural networks are not good at program

execution, we believe they are still effective ways of program search. We believe there are

two important components in this paradigm. One is to explore more efficient and effective

ways of sampling symbolic operations in the program space probably by introducing some

pruning strategies or inductive biases. The other is to find more efficient and effective ways of

training the models, e.g., better reinforcement learning algorithms or pretraining strategies

to boost reinforcement learning.

Complex question answering as graph reasoning. We would also like to explore the

possibilities of applying graph neural networks for complex reasoning. Graph neural networks

provide us a systematic way to introduce strong inductive biases into models, which might

help efficient search in the program space. One idea is to dynamically construct a question-

aware graph which consists of symbolic operations as nodes. Therefore, searching in the

program space is equivalent to doing random walk in the graph, which will largely reduce

the search space.

7.2.1.2 Conversational Question Answering

We believe that modeling conversation flow is important for conversational question

answering, and more broadly dialog systems. However, as we mentioned earlier, it is not

clear what is the best way to represent or model conversation flow. Another challenge here

is that we do not have very good ways to evaluate whether a model successfully captures the

conversation flow or not. The interpretability analysis we did in Chapter 4 is a good attempt

but is still not satisfying since it is implicit. In the future, we would like to explore more

98

effective ways of modeling conversation flow in the dialog as well as better ways to visualize

them.

7.2.1.3 Question Answering from Multimodal Data

Most previous works on QA focused on question answering from a single knowledge

source such as text or images. Recently, multimodal question answering has gained increasing

attention as it provides human users a more natural and effective way for information seeking.

[292] released a multimodal question answering dataset in the cultural heritage domain that

contains multimodal content about the fascinating old-Egyptian Amarna period, including

images of typical artworks, documents about these artworks (containing images) and over

800 multimodal queries integrating visual and textual questions. [293] introduced the task of

Multi-Modal Machine Comprehension, which aims at answering multimodal questions given

a context of text, diagrams and images. [294] considered the task of multimodal question

answering over structured data, in which a user supplies not just a natural language query

but also an image.

7.2.2 Question Generation

7.2.2.1 Personalized Question Generation

Almost all existing QG systems are non-personalized, and are not able to adapt their

generated questions to different users. We believe that personalized question generation can

be beneficial for educational assessment and dialog systems that require certain amount of

personalization. In order to build a personalized QG system, one might need to take the

user profile as additional input to the QG system, and integrate it with an additional user

profile modeling component.

7.2.2.2 Conversational Question Generation

Most existing QG systems can only generate a single question from the input context.

It will be interesting to see QG systems that can actually generate a sequence of related

questions from some long/large context. And this can be beneficial for helping conversational

question answering systems and dialog systems. Recent studies have explored the task of

conversational question generation. [295] focused on generating a question based on a passage

and a conversation history (i.e., previous turns of question-answer pairs). To this end, they

99

introduced an encoder-decoder framework which incorporates a reasoning procedure in a

dynamic manner to better understand what has been asked and what to ask next about the

passage. [296] proposed to first locate the question focus in the passage, and then identify

the question pattern that leads the sequential generation of the words in a question.

7.2.2.3 Question Generation from Multimodal Data

Similar to the situation in QA, almost all previous works on QG focused on question

generation from single knowledge source. A natural follow-up question is “can we do ques-

tion generation from multimodal data?”. Although to the best of our knowledge, this topic

has never been studied yet, we think it is worth exploring. Just as the classic single-source

QG, we believe QG from multimodal data will have useful applications in helping multi-

modal question answering, generating comprehensive practice exercises and assessments for

educational purposes, and helping dialog systems to kick-start and continue a conversation

with human users. Moreover, by utilizing rich context information, we might expect a QG

system to generate more complex and realistic questions.

7.2.2.4 Joint Learning of QA & QG

QG is a dual task of QA. Previously studies have shown that QG can help QA by

providing more training data [86], [94], [101]–[103], and QA can help QG by providing rich

reward signals on “answerability” [101]. A natural follow-up question is “can we jointly train

better QA and QG systems that can help each other?”. There is a line of research efforts on

jointly training QA and QG systems [92], [93], [297]–[302], but this requires further work.

BIBLIOGRAPHY

[1] W. A. Woods, “Progress in natural language understanding: an application to lunar

geology,” in Amer. Federation of Inf. Process. Societies: 1973 Nat. Comput. Conf.,

Jun. 4-8, 1973, pp. 441–450.

[2] J. Kupiec, “Murax: A robust linguistic approach for question answering using an on-

line encyclopedia,” in Proc. 16th Annu. Int. Conf. Res. and Develop. Inf. Retrieval,

Jun. 27 - Jul. 1, 1993, pp. 181–190.

[3] J. Berant, A. Chou, R. Frostig, and P. Liang, “Semantic parsing on freebase from

question-answer pairs,” in Proc. 2013 Conf. Empirical Meth. Natural Lang. Process.,

Oct. 18-21, 2013, pp. 1533–1544.

[4] A. Bordes, J. Weston, and N. Usunier, “Open question answering with weakly super-

vised embedding models,” in Mach. Learn. and Knowl. Discovery in Databases - Eur.

Conf., Sep. 15-19, 2014, pp. 165–180.

[5] A. Bordes, S. Chopra, and J. Weston, “Question answering with subgraph embed-

dings,” in Proc. 2014 Conf. Empirical Meth. Natural Lang. Process, Oct. 25-29, 2014,

pp. 615—-620.

[6] P. Yin, Z. Lu, H. Li, and B. Kao, “Neural enquirer: Learning to query tables with

natural language,” 2015, arXiv:1512.00965.

[7] S. Reed and N. De Freitas, “Neural programmer-interpreters,” 2015, arXiv:1511.06279.

[8] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirectional attention flow for

machine comprehension,” 2016, arXiv:1611.01603.

[9] L. Dong, F. Wei, M. Zhou, and K. Xu, “Question answering over freebase with multi-

column convolutional neural networks,” in Proc. 53rd Annu. Meeting Assoc. Comput.

Ling. and 7th Int. Joint Conf. Natural Lang. Process., vol. 1, Jul. 26-31, 2015, pp.

260–269.

[10] S. Jain, “Question answering over knowledge base using factual memory networks,” in

Proc. 2016 Conf. N. Amer. Chap. Assoc. Comput. Ling.: Human Lang. Technol., Jun.

12-17, 2016, pp. 109–115.

100

101

[11] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “Dbpedia: A

nucleus for a web of open data,” in Proc. 6th Int. Semantic Web Conf. and 2nd Asian

Semantic Web Conf., Nov. 11-15, 2007, vol. 4825, pp. 722–735.

[12] Google, “Freebase data dumps,” https://developers.google.com/freebase (Accessed

May 2, 2018).

[13] F. Mahdisoltani, J. Biega, and F. M. Suchanek, “Yago3: A knowledge base from

multilingual wikipedias,” in Proc. 7th Biennial Conf. Innovative Data Syst. Res., Jan.

4-7, 2015.

[14] D. Vrandečić and M. Krötzsch, “Wikidata: a free collaborative knowledgebase,” Com-

mun. of the ACM, vol. 57, no. 10, pp. 78–85, Sep. 2014.

[15] M.-C. Yang, N. Duan, M. Zhou, and H.-C. Rim, “Joint relational embeddings for

knowledge-based question answering,” in Proc. 2014 Conf. Empirical Meth. Natural

Lang. Process., Oct. 25-29, 2014, pp. 645–650.

[16] A. Bordes, N. Usunier, S. Chopra, and J. Weston, “Large-scale simple question an-

swering with memory networks,” 2015, arXiv:1506.02075.

[17] K. Xu, S. Reddy, Y. Feng, S. Huang, and D. Zhao, “Question answering on freebase

via relation extraction and textual evidence,” 2016, arXiv:1603.00957.

[18] Y. Hao, Y. Zhang, K. Liu, S. He, Z. Liu, H. Wu, and J. Zhao, “An end-to-end model for

question answering over knowledge base with cross-attention combining global knowl-

edge,” in Proc. 55th Annu. Meeting Assoc. Comput. Ling., vol. 1, Jul. 30 - Aug. 4,

2017, pp. 221–231.

[19] A. Saha, V. Pahuja, M. M. Khapra, K. Sankaranarayanan, and S. Chandar, “Com-

plex sequential question answering: Towards learning to converse over linked question

answer pairs with a knowledge graph,” in Proc. 32nd AAAI Conf. Artif. Intell., Feb.

2-7, 2018, pp. 705–713.

[20] P. Trivedi, G. Maheshwari, M. Dubey, and J. Lehmann, “Lc-quad: A corpus for com-

plex question answering over knowledge graphs,” in Proc. 16th Int. Semantic Web

Conf., vol. 10588, Oct. 21-25, 2017, pp. 210–218.

102

[21] Y. Su, H. Sun, B. Sadler, M. Srivatsa, I. Gür, Z. Yan, and X. Yan, “On generating

characteristic-rich question sets for QA eval.” in Proc. 2016 Conf. Empirical Meth.

Natural Lang. Process., Nov. 1-4, 2016, pp. 562–572.

[22] Y. Zhang, H. Dai, Z. Kozareva, A. J. Smola, and L. Song, “Variational reasoning for

question answering with knowledge graph,” in Proc. 32nd AAAI Conf. Artif. Intell.,

Feb. 2-7, 2018, pp. 6069–6076.

[23] D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gardner, “Drop: A

reading comprehension benchmark requiring discrete reasoning over paragraphs,” 2019,

arXiv:1903.00161.

[24] P. Pasupat and P. Liang, “Compositional semantic parsing on semi-structured tables,”

2015, arXiv:1508.00305.

[25] V. Zhong, C. Xiong, and R. Socher, “Seq2sql: Generating structured queries from

natural language using reinforcement learning,” 2017, arXiv:1709.00103.

[26] A. Neelakantan, Q. V. Le, and I. Sutskever, “Neural programmer: Inducing latent

programs with gradient descent,” 2015, arXiv:1511.04834.

[27] A. Neelakantan, Q. V. Le, M. Abadi, A. McCallum, and D. Amodei, “Learning a

natural language interface with neural programmer,” 2016, arXiv:1611.08945.

[28] C. Liang, J. Berant, Q. Le, K. D. Forbus, and N. Lao, “Neural symbolic machines:

Learning semantic parsers on freebase with weak supervision,” in Proc. 55th Annu.

Meeting Assoc. Comput. Ling., vol. 1, Jul. 30 - Aug. 4, 2017, pp. 23–33.

[29] J. Krishnamurthy, P. Dasigi, and M. Gardner, “Neural semantic parsing with type

constraints for semi-structured tables,” in Proc. 2017 Conf. Empirical Meth. Natural

Lang. Process., Sep. 9-11, 2017, pp. 1516–1526.

[30] F. Yang, Z. Yang, and W. W. Cohen, “Differentiable learning of logical rules for

knowledge base reasoning,” in Advances Neural Inf. Process. Syst., Dec. 4-9, 2017, pp.

2319–2328.

103

[31] L. Mou, Z. Lu, H. Li, and Z. Jin, “Coupling distributed and symbolic execution for

natural language queries,” in Proc. 34th Int. Conf. Mach. Learn., vol. 70, Aug. 6-11,

2017, pp. 2518–2526.

[32] S. Li, H. Xu, and Z. Lu, “Generalize symbolic knowledge with neural rule engine,”

2018, arXiv:1808.10326.

[33] M. Iyyer, W.-t. Yih, and M.-W. Chang, “Search-based neural structured learning for

sequential question answering,” in Proc. 55th Annu. Meeting Assoc. Comput. Ling.,

vol. 1, Jul. 30 - Aug. 4, 2017, pp. 1821–1831.

[34] X. Li, S. Panda, J. Liu, and J. Gao, “Microsoft dialogue challenge: Building end-to-end

task-completion dialogue systems,” 2018, arXiv:1807.11125.

[35] C. Gunasekara, J. K. Kummerfeld, L. Polymenakos, and W. Lasecki, “Dstc7 task 1:

Noetic end-to-end response selection,” in Proc. 1st Workshop on NLP for Conversa-

tional AI, 2019, pp. 60–67.

[36] L. E. Asri, H. Schulz, S. Sharma, J. Zumer, J. Harris, E. Fine, R. Mehrotra, and

K. Suleman, “Frames: A corpus for adding memory to goal-oriented dialogue systems,”

2017, arXiv:1704.00057.

[37] S. Reddy, D. Chen, and C. D. Manning, “Coqa: A conversational question answering

challenge,” 2018, arXiv:1808.07042.

[38] E. Choi, H. He, M. Iyyer, M. Yatskar, W.-t. Yih, Y. Choi, P. Liang, and L. Zettlemoyer,

“Quac: Question answering in context,” 2018, arXiv:1808.07036.

[39] M. Saeidi, M. Bartolo, P. Lewis, S. Singh, T. Rocktäschel, M. Sheldon, G. Bouchard,

and S. Riedel, “Interpretation of natural language rules in conversational machine

reading,” 2018, arXiv:1809.01494.

[40] J. A. Campos, A. Otegi, A. Soroa, J. Deriu, M. Cieliebak, and E. Agirre, “Conver-

sational qa for faqs,” in 3rd Conversational AI Workshop at the Conf. Neural Inf.

Process. Syst., Dec. 8-14, 2019.

[41] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization with pointer-

generator networks,” 2017, arXiv:1704.04368.

104

[42] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading wikipedia to answer open-

domain questions,” 2017, arXiv:1704.00051.

[43] M. Yatskar, “A qualitative comparison of coqa, squad 2.0 and quac,” 2018,

arXiv:1809.10735.

[44] J. C. Brown, G. A. Frishkoff, and M. Eskenazi, “Automatic question generation for

vocabulary assessment,” in Proc. Conf. Human Lang. Technol. and Empirical Meth.

Natural Lang. Process., Oct. 6-8, 2005, pp. 819–826.

[45] V. Rus, Z. Cai, and A. C. Graesser, “Experiments on generating questions about facts,”

in Int. Conf. Intell. Text Process. and Comput. Ling., Feb. 18-24, 2007, pp. 444–455.

[46] V. Rus, Z. Cai, and A. Graesser, “Question generation: Example of a multi-year evalu-

ation campaign,” in Proc. Workshop Question Gener. Shared Task & Eval. Challenge,

2008.

[47] V. Rus and J. Lester, “The 2nd workshop on question generation,” in Proc. 2009 Conf.

Artif. Intell. Educ., Jul. 6-10, 2009, pp. 808–808.

[48] V. Rus, B. Wyse, P. Piwek, M. Lintean, S. Stoyanchev, and C. Moldovan, “The first

question generation shared task evaluation challenge,” in Proc. 6th Int. Natural Lang.

Gener. Conf., Jul. 7-9, 2010.

[49] M. Liu, R. A. Calvo, and V. Rus, “Automatic question generation for literature review

writing support,” in Int. Conf. Intell. Tutoring Syst., Jun. 14-18, 2010, pp. 45–54.

[50] V. Rus, B. Wyse, P. Piwek, M. Lintean, S. Stoyanchev, and C. Moldovan, “Question

generation shared task and evaluation challenge–status report,” in Proc. 13th Eur.

Workshop Natural Lang. Gener., Sep. 28-30, 2011, pp. 318–320.

[51] M. Liu, R. A. Calvo, and V. Rus, “G-asks: An intelligent automatic question generation

system for academic writing support,” Dialogue & Discourse, vol. 3, no. 2, pp. 101–124,

Mar. 2012.

[52] V. Rus, B. Wyse, P. Piwek, M. Lintean, S. Stoyanchev, and C. Moldovan, “A detailed

account of the first question generation shared task evaluation challenge,” Dialogue &

Discourse, vol. 3, no. 2, pp. 177–204, Mar. 2012.

105

[53] I. M. Mora and S. P. de la Puente, “Towards automatic generation of question answer

pairs from images,” in Vis. Question Answering Challenge Workshop, Conf. Comput.

Vision and Pattern Recognit., Jun. 2016.

[54] N. Mostafazadeh, I. Misra, J. Devlin, M. Mitchell, X. He, and L. Vanderwende, “Gen-

erating natural questions about an image,” 2016, arXiv:1603.06059.

[55] S. Zhang, L. Qu, S. You, Z. Yang, and J. Zhang, “Automatic generation of grounded

visual questions,” 2016, arXiv:1612.06530.

[56] U. Jain, Z. Zhang, and A. G. Schwing, “Creativity: Generating diverse questions using

variational autoencoders,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit.,

Jul. 21-26, 2017, pp. 6485–6494.

[57] Y. Li, N. Duan, B. Zhou, X. Chu, W. Ouyang, X. Wang, and M. Zhou, “Visual question

generation as dual task of visual question answering,” in Proc. IEEE Conf. Comput.

Vision and Pattern Recognit., Jun. 18-22, 2018, pp. 6116–6124.

[58] Z. Fan, Z. Wei, S. Wang, Y. Liu, and X. Huang, “A reinforcement learning frame-

work for natural question generation using bi-discriminators,” in Proc. 27th Int. Conf.

Comput. Ling., Aug. 20-26, 2018, pp. 1763–1774.

[59] R. Lebret, D. Grangier, and M. Auli, “Neural text generation from structured data

with application to the biography domain,” 2016, arXiv:1603.07771.

[60] T. Liu, K. Wang, L. Sha, B. Chang, and Z. Sui, “Table-to-text generation by structure-

aware seq2seq learning,” in Proc. 32nd AAAI Conf. Artif. Intell., Feb. 2-7, 2018, pp.

4881–4888.

[61] J. Bao, D. Tang, N. Duan, Z. Yan, Y. Lv, M. Zhou, and T. Zhao, “Table-to-text: De-

scribing table region with natural language,” in Proc. 32nd AAAI Conf. Artif. Intell.,

Feb. 2-7, 2018, pp. 5020–5027.

[62] T. Liu, F. Luo, Q. Xia, S. Ma, B. Chang, and Z. Sui, “Hierarchical encoder with aux-

iliary supervision for neural table-to-text generation: Learning better representation

for tables,” in Proc. 33rd AAAI Conf. Artif. Intell., vol. 3, Jan. 27 - Feb. 1, 2019, pp.

6786–6793.

106

[63] D. Seyler, M. Yahya, and K. Berberich, “Generating quiz questions from knowledge

graphs,” in Proc. 24th Int. Conf. World Wide Web, May 18-22, 2015, pp. 113–114.

[64] L. Song and L. Zhao, “Question generation from a knowledge base with web explo-

ration,” 2016, arXiv:1610.03807.

[65] D. Seyler, M. Yahya, and K. Berberich, “Knowledge questions from knowledge graphs,”

in Proc. ACM SIGIR Int. Conf. Theory of Inf. Retrieval, Oct. 1-4, 2017, pp. 11–18.

[66] I. V. Serban, A. Garćıa-Durán, C. Gulcehre, S. Ahn, S. Chandar, A. Courville, and

Y. Bengio, “Generating factoid questions with recurrent neural networks: The 30m

factoid question-answer corpus,” 2016, arXiv:1603.06807.

[67] S. Reddy, D. Raghu, M. M. Khapra, and S. Joshi, “Generating natural language

question-answer pairs from a knowledge graph using a rnn based question genera-

tion model,” in Proc. 15th Conf. Eur. Chap. Assoc. Comput. Ling., vol. 1, Apr. 3-7,

2017, pp. 376–385.

[68] H. Elsahar, C. Gravier, and F. Laforest, “Zero-shot question generation from knowledge

graphs for unseen predicates and entity types,” 2018, arXiv:1802.06842.

[69] V. Kumar, Y. Hua, G. Ramakrishnan, G. Qi, L. Gao, and Y.-F. Li, “Difficulty-

controllable multi-hop question generation from knowledge graphs,” in Proc. 2019 Int.

Semantic Web Conf., Oct. 26-30, 2019, pp. 382–398.

[70] J. Mostow and W. Chen, “Generating instruction automatically for the reading strat-

egy of self-questioning,” in Proc. 14th Int. Conf. Artif. Intell. Educ., Jul. 6-10, 2009,

pp. 465–472.

[71] M. Heilman and N. A. Smith, “Good question! statistical ranking for question gener-

ation,” in Proc. 2010 Annu. Conf. N. Amer. Chap. Assoc. Comput. Ling., Jun. 2-4,

2010, pp. 609–617.

[72] M. Heilman, “Automatic factual question generation from text,” Ph.D. dissertation,

Lang. Technol. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA, 2011.

[73] X. Du, J. Shao, and C. Cardie, “Learning to ask: Neural question generation for

reading comprehension,” 2017, arXiv:1705.00106.

107

[74] Q. Zhou, N. Yang, F. Wei, C. Tan, H. Bao, and M. Zhou, “Neural question generation

from text: A preliminary study,” in Nat. CCF Conf. Natural Lang. Process. and Chin.

Comput., Nov. 8-12, 2017, pp. 662–671.

[75] L. Song, Z. Wang, W. Hamza, Y. Zhang, and D. Gildea, “Leveraging context infor-

mation for natural question generation,” in Proc. 2018 Conf. N. Amer. Chap. Assoc.

Comput. Ling.: Human Lang. Technol., vol. 2, Jun. 1-6, 2018, pp. 569–574.

[76] V. Kumar, K. Boorla, Y. Meena, G. Ramakrishnan, and Y.-F. Li, “Automating reading

comprehension by generating question and answer pairs,” in Pacific-Asia Conf. Knowl.

Discovery and Data Mining, Jun. 3-6, 2018, pp. 335–348.

[77] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural

networks,” in Advances Neural Inf. Process. Syst., Dec. 8-13, 2014, pp. 3104–3112.

[78] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and

Y. Bengio, “Learning phrase representations using rnn encoder–decoder for statistical

machine translation,” in Proc. 2014 Conf. Empirical Meth. Natural Lang. Process.,

Oct. 25-29, 2014, pp. 1724–1734.

[79] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based

neural machine translation,” 2015, arXiv:1508.04025.

[80] R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang et al., “Abstractive text summarization

using sequence-to-sequence rnns and beyond,” 2016, arXiv:1602.06023.

[81] R. Paulus, C. Xiong, and R. Socher, “A deep reinforced model for abstractive summa-

rization,” 2017, arXiv:1705.04304.

[82] I. V. Serban, A. Sordoni, Y. Bengio, A. C. Courville, and J. Pineau, “Building end-to-

end dialogue systems using generative hierarchical neural network models,” in Proc.

30th AAAI Conf. Artif. Intell., vol. 16, Feb. 12-17, 2016, pp. 3776–3784.

[83] I. V. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. Courville, and Y. Bengio,

“A hierarchical latent variable encoder-decoder model for generating dialogues,” in

Proc. 31st AAAI Conf. Artif. Intell., Feb. 4-9, 2017, pp. 3295–3301.

108

[84] V. Kumar, G. Ramakrishnan, and Y.-F. Li, “A framework for automatic question

generation from text using deep reinforcement learning,” 2018, arXiv:1808.04961.

[85] S. Subramanian, T. Wang, X. Yuan, S. Zhang, Y. Bengio, and A. Trischler, “Neural

models for key phrase detection and question generation,” 2017, arXiv:1706.04560.

[86] X. Yuan, T. Wang, C. Gulcehre, A. Sordoni, P. Bachman, S. Subramanian, S. Zhang,

and A. Trischler, “Machine comprehension by text-to-text neural question generation,”

2017, arXiv:1705.02012.

[87] Y. Zhao, X. Ni, Y. Ding, and Q. Ke, “Paragraph-level neural question generation with

maxout pointer and gated self-attention networks,” in Proc. 2018 Conf. Empirical

Meth. Natural Lang. Process., Oct. 31 - Nov. 4, 2018, pp. 3901–3910.

[88] B. Liu, M. Zhao, D. Niu, K. Lai, Y. He, H. Wei, and Y. Xu, “Learning to generate

questions by learning what not to generate,” 2019, arXiv:1902.10418.

[89] L. Song, Z. Wang, and W. Hamza, “A unified query-based generative model for ques-

tion generation and question answering,” 2017, arXiv:1709.01058.

[90] Y. Kim, H. Lee, J. Shin, and K. Jung, “Improving neural question generation using

answer separation,” 2018, arXiv:1809.02393.

[91] X. Sun, J. Liu, Y. Lyu, W. He, Y. Ma, and S. Wang, “Answer-focused and position-

aware neural question generation,” in Proc. 2018 Conf. Empirical Meth. Natural Lang.

Process., Aug. 28-30, 2018, pp. 3930–3939.

[92] D. Tang, N. Duan, T. Qin, Z. Yan, and M. Zhou, “Question answering and question

generation as dual tasks,” 2017, arXiv:1706.02027.

[93] T. Wang, X. Yuan, and A. Trischler, “A joint model for question answering and ques-

tion generation,” 2017, arXiv:1706.01450.

[94] X. Wang, B. Wang, T. Yao, Q. Zhang, and J. Xu, “Neural question generation with

answer pivot,” in Proc. 34th AAAI Conf. Artif. Intell., Feb. 7-12, 2020, pp. 9138–9145.

[95] X. Du and C. Cardie, “Harvesting paragraph-level question-answer pairs from

wikipedia,” 2018, arXiv:1805.05942.

109

[96] V. Kumar, S. Muneeswaran, G. Ramakrishnan, and Y.-F. Li, “Paraqg: A system for

generating questions and answers from paragraphs,” 2019, arXiv:1909.01642.

[97] Y. Chen, L. Wu, and M. J. Zaki, “Bidirectional attentive memory networks for question

answering over knowledge bases,” in Proc. 2019 Conf. N. Amer. Chap. Assoc. Comput.

Ling.: Human Lang. Technol., vol. 1, Jun. 2-7, 2019, pp. 2913–2923.

[98] Y. Chen, L. Wu, and M. Zaki, “Graphflow: Exploiting conversation flow with graph

neural networks for conversational machine comprehension,” in Proc. 29th Int. Joint

Conf. Artif. Intell., Jul. 2020, pp. 1230–1236.

[99] S. Haussmann, O. Seneviratne, Y. Chen, Y. Ne’eman, J. Codella, C.-H. Chen, D. L.

McGuinness, and M. J. Zaki, “Foodkg: A semantics-driven knowledge graph for food

recommendation,” in Proc. 18th Int. Semantic Web Conf., vol. 11779, Oct. 26-30, 2019,

pp. 146–162.

[100] S. Haussmann, Y. Chen, O. Seneviratne, N. Rastogi, J. Codella, C.-H. Chen, D. L.

McGuinness, and M. J. Zaki, “Foodkg enabled q&a application,” in Proc. ISWC 2019

Satell. Tracks (Posters & Demonstrations, Industry, and Outrageous Ideas) co-located

with 18th Int. Semantic Web Conf., vol. 2456, Oct. 26-30, 2019, pp. 273–276.

[101] S. Zhang and M. Bansal, “Addressing semantic drift in question generation for semi-

supervised question answering,” 2019, arXiv:1909.06356.

[102] A. R. Fabbri, P. Ng, Z. Wang, R. Nallapati, and B. Xiang, “Template-based question

generation from retrieved sentences for improved unsupervised question answering,”

2020, arXiv:2004.11892.

[103] J. Yu, X. Quan, Q. Su, and J. Yin, “Generating multi-hop reasoning questions to

improve machine reading comprehension,” in Proc. 2020 Web Conf., Apr. 20-24, 2020,

pp. 281–291.

[104] D. Lindberg, F. Popowich, J. Nesbit, and P. Winne, “Generating natural language

questions to support learning on-line,” in Proc. 14th Eur. Workshop Natural Lang.

Gener., Aug. 8-9, 2013, pp. 105–114.

110

[105] G. Danon and M. Last, “A syntactic approach to domain-specific automatic question

generation,” 2017, arXiv:1712.09827.

[106] L. A. Tuan, D. J. Shah, and R. Barzilay, “Capturing greater context for question

generation,” 2019, arXiv:1910.10274.

[107] V. Kumar, R. Chaki, S. T. Talluri, G. Ramakrishnan, Y.-F. Li, and G. Haffari,

“Question generation from paragraphs: A tale of two hierarchical models,” 2019,

arXiv:1911.03407.

[108] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Advances Neural Inf. Process. Syst.,

Dec. 4-9, 2017, pp. 5998–6008.

[109] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level training with

recurrent neural networks,” 2015, arXiv:1511.06732.

[110] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,

Q. Gao, K. Macherey et al., “Google’s neural machine translation system: Bridging

the gap between human and machine translation,” 2016, arXiv:1609.08144.

[111] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist re-

inforcement learning,” Mach. Learn., vol. 8, no. 3-4, pp. 229–256, May 1992.

[112] L. Pan, W. Lei, T.-S. Chua, and M.-Y. Kan, “Recent advances neural question gener-

ation,” 2019, arXiv:1905.08949.

[113] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic

evaluation of machine translation,” in Proc. 40th Annu. Meeting on Assoc. Comput.

Ling., Jul. 6-12, 2002, pp. 311–318.

[114] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evaluation with im-

proved correlation with human judgments,” in Proc. Assoc. Comput. Ling. Workshop

Intrinsic and Extrinsic Eval. Measures Mach. Transl. and/or Summarization, Jun. 29,

2005, pp. 65–72.

[115] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” in Text Sum-

marization Branches Out, Jul. 2004, pp. 74–81.

111

[116] C. Callison-Burch, M. Osborne, and P. Koehn, “Re-evaluation the role of bleu in

machine translation research,” in Proc. 11th Conf. Eur. Chap. Assoc. Comput. Ling.,

Apr. 3-7, 2006, pp. 249–256.

[117] C.-W. Liu, R. Lowe, I. V. Serban, M. Noseworthy, L. Charlin, and J. Pineau, “How

not to evaluate your dialogue system: An empirical study of unsupervised evaluation

metrics for dialogue response generation,” 2016, arXiv:1603.08023.

[118] P. Nema and M. M. Khapra, “Towards a better metric for evaluating question gener-

ation systems,” 2018, arXiv:1808.10192.

[119] W. Zhao, M. Peyrard, F. Liu, Y. Gao, C. M. Meyer, and S. Eger, “Moverscore:

Text generation evaluating with contextualized embeddings and earth mover distance,”

2019, arXiv:1909.02622.

[120] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore: Evaluating

text generation with bert,” 2019, arXiv:1904.09675.

[121] T. Sellam, D. Das, and A. P. Parikh, “Bleurt: Learning robust metrics for text gener-

ation,” 2020, arXiv:2004.04696.

[122] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-

moyer, “Deep contextualized word representations,” 2018, arXiv:1802.05365.

[123] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep

bidirectional transformers for language understanding,” 2018, arXiv:1810.04805.

[124] L. S. Zettlemoyer and M. Collins, “Learning to map sentences to logical form: Struc-

tured classification with probabilistic categorial grammars,” 2012, arXiv:1207.1420.

[125] Y. W. Wong and R. Mooney, “Learning synchronous grammars for semantic parsing

with lambda calculus,” in Proc. 45th Annu. Meeting Assoc. Comput. Ling., Jun. 23-30,

2007, pp. 960–967.

[126] T. Kwiatkowski, L. Zettlemoyer, S. Goldwater, and M. Steedman, “Inducing proba-

bilistic ccg grammars from logical form with higher-order unification,” in Proc. 2010

Conf. Empirical Meth. Natural Lang. Process., Oct. 9-11, 2010, pp. 1223–1233.

112

[127] C. Unger, L. Bühmann, J. Lehmann, A.-C. Ngonga Ngomo, D. Gerber, and P. Cimiano,

“Template-based question answering over rdf data,” in Proc. 21st World Wide Web

Conf., Apr. 16-20, 2012, pp. 639–648.

[128] J. Berant and P. Liang, “Imitation learning of agenda-based semantic parsers,” Trans.

Assoc. Comput. Ling., vol. 3, pp. 545–558, Nov. 2015.

[129] S. Reddy, O. Täckström, M. Collins, T. Kwiatkowski, D. Das, M. Steedman, and

M. Lapata, “Transforming dependency structures to logical forms for semantic pars-

ing,” Trans. Assoc. Comput. Ling., vol. 4, pp. 127–140, Apr. 2016.

[130] J. Bao, N. Duan, Z. Yan, M. Zhou, and T. Zhao, “Constraint-based question answering

with knowledge graph,” in 26th Int. Conf. Comput. Ling., Dec. 11-16, 2016, pp. 2503–

2514.

[131] A. Abujabal, M. Yahya, M. Riedewald, and G. Weikum, “Automated template gener-

ation for question answering over knowledge graphs,” in Proc. 26th Int. Conf. World

Wide Web, Apr. 3-7, 2017, pp. 1191–1200.

[132] S. Hu, L. Zou, J. X. Yu, H. Wang, and D. Zhao, “Answering natural language ques-

tions by subgraph matching over knowledge graphs,” IEEE Trans. Knowl. Data Eng.,

vol. 30, no. 5, pp. 824–837, Oct. 2018.

[133] H. Bast and E. Haussmann, “More accurate question answering on freebase,” in Proc.

24th ACM Int. Conf. Inf. and Knowl. Manage., Oct. 19-23, 2015, pp. 1431–1440.

[134] S. W.-t. Yih, M.-W. Chang, X. He, and J. Gao, “Semantic parsing via staged query

graph generation: Question answering with knowledge base,” in Proc. 53rd Annu.

Meeting Assoc. Comput. Ling., Jul. 26-31, 2015, pp. 1321–1331.

[135] Q. Cai and A. Yates, “Large-scale semantic parsing via schema matching and lexicon

extension,” in Proc. 51st Annu. Meeting Assoc. Comput. Ling., vol. 1, Aug. 4-9, 2013,

pp. 423–433.

[136] J. Krishnamurthy and T. M. Mitchell, “Weakly supervised training of semantic

parsers,” in Proc. 2012 Joint Conf. Empirical Meth. Natural Lang. Process. and Com-

put. Natural Lang. Learn., Jul. 12-14, 2012, pp. 754–765.

113

[137] X. Yao and B. Van Durme, “Information extraction over structured data: Question

answering with freebase,” in Proc. 52nd Annu. Meeting Assoc. Comput. Ling., vol. 1,

Jun. 22-27, 2014, pp. 956–966.

[138] S. Yavuz, I. Gur, Y. Su, M. Srivatsa, and X. Yan, “Improving semantic parsing via

answer type inference,” in Proc. 2016 Conf. Empirical Meth. Natural Lang. Process.,

Nov. 1-4, 2016, pp. 149–159.

[139] K. J. Han, A. Chandrashekaran, J. Kim, and I. Lane, “The capio 2017 conversational

speech recognition system,” 2017, arXiv:1801.00059.

[140] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning

to align and translate,” 2014, arXiv:1409.0473.

[141] C. Tan, F. Wei, N. Yang, W. Lv, and M. Zhou, “S-net: From answer extraction to

answer generation for machine reading comprehension,” 2017, arXiv:1706.04815.

[142] Y. Feng, S. Huang, D. Zhao et al., “Hybrid question answering over knowledge base and

free text,” in Proc. 26th Int. Conf. Comput. Ling., Dec. 11-16, 2016, pp. 2397–2407.

[143] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” 2014, arXiv:1410.3916.

[144] W. W. Cohen, “Tensorlog: A differentiable deductive database,” 2016,

arXiv:1605.06523.

[145] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and

P. Blunsom, “Teaching machines to read and comprehend,” in Advances Neural Inf.

Process. Syst., Dec. 7-12, 2015, pp. 1693–1701.

[146] Y. Cui, Z. Chen, S. Wei, S. Wang, T. Liu, and G. Hu, “Attention-over-attention neural

networks for reading comprehension,” 2016, arXiv:1607.04423.

[147] C. Xiong, V. Zhong, and R. Socher, “Dynamic coattention networks for question an-

swering,” 2016, arXiv:1611.01604.

[148] S. Kundu and H. T. Ng, “A question-focused multi-factor attention network for an-

swering,” 2018, arXiv:1801.08290.

114

[149] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions for

machine comprehension of text,” 2016, arXiv:1606.05250.

[150] C. Zhu, M. Zeng, and X. Huang, “Sdnet: Contextualized attention-based deep network

for conversational question answering,” 2018, arXiv:1812.03593.

[151] H.-Y. Huang, E. Choi, and W.-t. Yih, “Flowqa: Grasping flow in history for conver-

sational machine comprehension,” 2018, arXiv:1810.06683.

[152] Y. Chen, L. Wu, and M. J. Zaki, “Reinforcement learning based graph-to-sequence

model for natural question generation,” in Proc. 8th Int. Conf. Learn. Representations,

Apr. 26-30, 2020.

[153] L. Pan, Y. Xie, Y. Feng, T.-S. Chua, and M.-Y. Kan, “Semantic graphs for generating

deep questions,” 2020, arXiv:2004.12704.

[154] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances Neural Inf.

Process. Syst., Dec. 7-12, 2015, pp. 2692–2700.

[155] J. Gu, Z. Lu, H. Li, and V. O. Li, “Incorporating copying mechanism in sequence-to-

sequence learning,” 2016, arXiv:1603.06393.

[156] Z. Tu, Z. Lu, Y. Liu, X. Liu, and H. Li, “Modeling coverage for neural machine

translation,” 2016, arXiv:1601.04811.

[157] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou, and H.-W.

Hon, “Unified language model pre-training for natural language understanding and

generation,” in Advances Neural Inf. Process. Syst., Dec. 8-14, 2019, pp. 13 042–13 054.

[158] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.

436–444, May 2015.

[159] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA:

MIT Press, 2016.

[160] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proc. 2016 IEEE Conf. Comput. Vision and Pattern Recognit., Jun. 27-30, 2016,

pp. 770–778.

115

[161] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent

neural networks,” in IEEE Int. Conf. Acoust., Speech and Signal Process., May 26-31,

2013, pp. 6645–6649.

[162] Y. Chen and M. J. Zaki, “KATE: k-competitive autoencoder for text,” in Proc. 23rd

Int. Conf. Knowl. Discovery and Data Mining, Aug. 13-17, 2017, pp. 85–94.

[163] J. You, B. Liu, Z. Ying, V. Pande, and J. Leskovec, “Graph convolutional policy net-

work for goal-directed molecular graph generation,” in Advances Neural Inf. Process.

Syst., Dec. 3-8, 2018, pp. 6410–6421.

[164] Y. Chen, R. M. Rabbani, A. Gupta, and M. J. Zaki, “Comparative text analytics via

topic modeling in banking,” in Proc. 2017 IEEE Symp. Series Comput. Intell., Nov.

27 - Dec. 1, 2017, pp. 1–8.

[165] J. Zou, M. Huss, A. Abid, P. Mohammadi, A. Torkamani, and A. Telenti, “A primer

on deep learning in genomics,” Nature Genetics, vol. 51, no. 1, pp. 12–18, Nov. 2019.

[166] S. Liu, Y. Chen, X. Xie, J. K. Siow, and Y. Liu, “Automatic code summarization via

multi-dimensional semantic fusing in gnn,” 2020, arXiv:2006.05405.

[167] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”

J. of Artif. Intell. Res., vol. 4, pp. 237–285, May 1996.

[168] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge,

MA, USA: MIT Press, 2018.

[169] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations

by error propagation,” California Univ. San Diego, Tech. Rep., 1985.

[170] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient

descent is difficult,” IEEE Trans. Neural Networks, vol. 5, no. 2, pp. 157–166, Mar.

1994.

[171] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient flow in recurrent

nets: the difficulty of learning long-term dependencies,” in A Field Guide to Dynamical

Recurrent Neural Networks. Piscataway, NJ, USA: IEEE Press, 2001, ch. 14, pp. 237–

244.

116

[172] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9,

no. 8, pp. 1735–1780, Nov. 1997.

[173] J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber, “A clockwork rnn,” 2014,

arXiv:1402.3511.

[174] K. Yao, T. Cohn, K. Vylomova, K. Duh, and C. Dyer, “Depth-gated lstm,” 2015,

arXiv:1508.03790.

[175] G.-B. Zhou, J. Wu, C.-L. Zhang, and Z.-H. Zhou, “Minimal gated unit for recurrent

neural networks,” Int. J. of Automat. and Comput., vol. 13, no. 3, pp. 226–234, Jun.

2016.

[176] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of recurrent

network architectures,” in Int. Conf. Mach. Learn., Jul. 6-11, 2015, pp. 2342–2350.

[177] K. Greff, R. K. Srivastava, J. Koutńık, B. R. Steunebrink, and J. Schmidhuber, “Lstm:

A search space odyssey,” IEEE Trans. on Neural Networks and Learn. Syst., vol. 28,

no. 10, pp. 2222–2232, Mar. 2016.

[178] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Trans.

on Signal Process., vol. 45, no. 11, pp. 2673–2681, Nov. 1997.

[179] S. Fernández, A. Graves, and J. Schmidhuber, “An application of recurrent neural

networks to discriminative keyword spotting,” in Int. Conf. Artif. Neural Networks,

Sep. 9-13, 2007, pp. 220–229.

[180] N. Boulanger-Lewandowski, “Modeling high-dimensional audio sequences with recur-

rent neural networks,” Ph.D. dissertation, Dept. Comput. Sci. and Oper. Res., Univ.

Montreal, Montreal, QC, CA, 2014.

[181] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber, “A

novel connectionist system for unconstrained handwriting recognition,” IEEE Trans.

on Pattern Anal. and Mach. Intell., vol. 31, no. 5, pp. 855–868, May 2008.

[182] D. Golub and X. He, “Character-level question answering with attention,” 2016,

arXiv:1604.00727.

117

[183] W. Yin, M. Yu, B. Xiang, B. Zhou, and H. Schütze, “Simple question answering by

attentive convolutional neural network,” 2016, arXiv:1606.03391.

[184] R. Kadlec, M. Schmid, O. Bajgar, and J. Kleindienst, “Text understanding with the

attention sum reader network,” 2016, arXiv:1603.01547.

[185] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston, “Key-value

memory networks for directly reading documents,” 2016, arXiv:1606.03126.

[186] J. Yin, X. Jiang, Z. Lu, L. Shang, H. Li, and X. Li, “Neural generative question

answering,” 2015, arXiv:1512.01337.

[187] M. Eric and C. D. Manning, “Key-value retrieval networks for task-oriented dialogue,”

2017, arXiv:1705.05414.

[188] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social repre-

sentations,” in Proc. 20th Int. Conf. Knowl. Discovery and Data Mining, Aug. 24-27,

2014, pp. 701–710.

[189] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Proc.

22nd Int. Conf. Knowl. Discovery and Data Mining, Aug. 13-17, 2016, pp. 855–864.

[190] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale infor-

mation network embedding,” in Proc. 24th Int. Conf. World Wide Web, May 18-22,

2015, pp. 1067–1077.

[191] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang, “Network representation learning

with rich text information,” in Proc. 24th Int. Joint Conf. Artif. Intell., Jul. 25-31,

2015, pp. 2111–2117.

[192] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph

neural network model,” IEEE Trans. on Neural Networks, vol. 20, no. 1, pp. 61–80,

Dec. 2008.

[193] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” 2016, arXiv:1609.02907.

118

[194] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geometric

deep learning: going beyond euclidean data,” IEEE Signal Process. Mag., vol. 34,

no. 4, pp. 18–42, Jul. 2017.

[195] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message

passing for quantum chemistry,” in Proc. 34th Int. Conf. Mach. Learn., vol. 70, Aug.

2017, pp. 1263–1272.

[196] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large

graphs,” in Advances Neural Inf. Process. Syst., Dec. 4-9, 2017, pp. 1024–1034.

[197] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence neural

networks,” 2015, arXiv:1511.05493.

[198] K. Xu, L. Wu, Z. Wang, and V. Sheinin, “Graph2seq: Graph to sequence learning

with attention-based neural networks,” 2018, arXiv:1804.00823.

[199] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Mali-

nowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner et al., “Relational inductive

biases, deep learning, and graph networks,” 2018, arXiv:1806.01261.

[200] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally

connected networks on graphs,” 2013, arXiv:1312.6203.

[201] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on graph-structured

data,” 2015, arXiv:1506.05163.

[202] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-

Guzik, and R. P. Adams, “Convolutional networks on graphs for learning molecular

fingerprints,” in Advances Neural Inf. Process. Syst., Dec. 7-12, 2015, pp. 2224–2232.

[203] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on

graphs with fast localized spectral filtering,” in Advances Neural Inf. Process. Syst.,

Dec. 5-10, 2016, pp. 3844–3852.

[204] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph

attention networks,” 2017, arXiv:1710.10903.

119

[205] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung, “Gaan: Gated attention

networks for learning on large and spatiotemporal graphs,” 2018, arXiv:1803.07294.

[206] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec, “Hierarchical graph

representation learning with differentiable pooling,” in Advances Neural Inf. Process.

Syst., Dec. 3-8, 2018, pp. 4800–4810.

[207] H. Gao and S. Ji, “Graph u-nets,” 2019, arXiv:1905.05178.

[208] D. Teney, L. Liu, and A. van den Hengel, “Graph-structured representations for visual

question answering,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit., Jul.

21-26, 2017, pp. 1–9.

[209] W. Norcliffe-Brown, S. Vafeias, and S. Parisot, “Learning conditioned graph structures

for interpretable visual question answering,” in Advances Neural Inf. Process. Syst.,

Dec. 3-8, 2018, pp. 8344–8353.

[210] Z. Wang, T. Chen, J. Ren, W. Yu, H. Cheng, and L. Lin, “Deep reasoning with

knowledge graph for social relationship understanding,” 2018, arXiv:1807.00504.

[211] M. Narasimhan, S. Lazebnik, and A. Schwing, “Out of the box: Reasoning with graph

convolution nets for factual visual question answering,” in Advances Neural Inf. Pro-

cess. Syst., Dec. 3-8, 2018, pp. 2659–2670.

[212] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph

convolutional neural networks for web-scale recommender systems,” in Proc. 24th Int.

Conf. Knowl. Discovery and Data Mining, Aug. 19-23, 2018, pp. 974–983.

[213] C. Xu, P. Zhao, Y. Liu, V. S. Sheng, J. Xu, F. Zhuang, J. Fang, and X. Zhou, “Graph

contextualized self-attention network for session-based recommendation,” in Proc. 28th

Int. Joint Conf. Artif. Intell., Aug. 10-16, 2019, pp. 3940–3946.

[214] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph neural networks

for social recommendation,” in Proc. World Wide Web Conf., May 13-17, 2019, pp.

417–426.

[215] H. Wang, F. Zhang, M. Zhang, J. Leskovec, M. Zhao, W. Li, and Z. Wang, “Knowledge-

aware graph neural networks with label smoothness regularization for recommender

120

systems,” in Proc. 25th Int. Conf. Knowl. Discovery and Data Mining, Aug. 4-8, 2019,

pp. 968–977.

[216] R. Yin, K. Li, G. Zhang, and J. Lu, “A deeper graph neural network for recommender

systems,” Knowl.-Based Syst., vol. 185, p. 105020, Dec. 2019.

[217] A. Deac, Y.-H. Huang, P. Veličković, P. Liò, and J. Tang, “Drug-drug adverse effect

prediction with graph co-attention,” 2019, arXiv:1905.00534.

[218] T. Nguyen, H. Le, and S. Venkatesh, “Graphdta: prediction of drug–target binding

affinity using graph convolutional networks,” BioRxiv, p. 684662, Jul. 2019.

[219] W. Torng and R. B. Altman, “Graph convolutional neural networks for predicting

drug-target interactions,” J. of Chem. Inf. and Model., vol. 59, no. 10, pp. 4131–4149,

Oct. 2019.

[220] M. Sun, S. Zhao, C. Gilvary, O. Elemento, J. Zhou, and F. Wang, “Graph convolutional

networks for computational drug development and discovery,” Briefings in Bioinf.,

vol. 21, no. 3, pp. 919–935, May 2020.

[221] B. Tang, S. T. Kramer, M. Fang, Y. Qiu, Z. Wu, and D. Xu, “A self-attention based

message passing neural network for predicting molecular lipophilicity and aqueous

solubility,” J. Cheminformatics, vol. 12, no. 1, pp. 1–9, Feb. 2020.

[222] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang, “Graphaf: a flow-based

autoregressive model for molecular graph generation,” 2020, arXiv:2001.09382.

[223] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for text classification,”

in Proc. AAAI Conf. Artif. Intell., vol. 33, Feb. 7-12, 2019, pp. 7370–7377.

[224] H. Sun, B. Dhingra, M. Zaheer, K. Mazaitis, R. Salakhutdinov, and W. W. Cohen,

“Open domain question answering using early fusion of knowledge bases and text,”

2018, arXiv:1809.00782.

[225] N. De Cao, W. Aziz, and I. Titov, “Question answering by reasoning across documents

with graph convolutional networks,” 2018, arXiv:1808.09920.

121

[226] L. Song, Z. Wang, M. Yu, Y. Zhang, R. Florian, and D. Gildea, “Exploring graph-

structured passage representation for multi-hop reading comprehension with graph

neural networks,” 2018, arXiv:1809.02040.

[227] K. Xu, L. Wu, Z. Wang, M. Yu, L. Chen, and V. Sheinin, “Sql-to-text generation with

graph-to-sequence model,” 2018, arXiv:1809.05255.

[228] W. Hu, Z. Chan, B. Liu, D. Zhao, J. Ma, and R. Yan, “Gsn: A graph-structured

network for multi-party dialogues,” 2019, arXiv:1905.13637.

[229] D. Ghosal, N. Majumder, S. Poria, N. Chhaya, and A. Gelbukh, “Dialoguegcn: A

graph convolutional neural network for emotion recognition in conversation,” 2019,

arXiv:1908.11540.

[230] J. Bastings, I. Titov, W. Aziz, D. Marcheggiani, and K. Sima’an, “Graph convolutional

encoders for syntax-aware neural machine translation,” 2017, arXiv:1704.04675.

[231] D. Beck, G. Haffari, and T. Cohn, “Graph-to-sequence learning using gated graph

neural networks,” 2018, arXiv:1806.09835.

[232] K. Xu, L. Wu, Z. Wang, M. Yu, L. Chen, and V. Sheinin, “Exploiting rich

syntactic information for semantic parsing with graph-to-sequence model,” 2018,

arXiv:1808.07624.

[233] L. Song, Y. Zhang, Z. Wang, and D. Gildea, “A graph-to-sequence model for amr-to-

text generation,” 2018, arXiv:1805.02473.

[234] D. Marcheggiani and L. Perez-Beltrachini, “Deep graph convolutional encoders for

structured data to text generation,” 2018, arXiv:1810.09995.

[235] B. Distiawan, J. Qi, R. Zhang, and W. Wang, “Gtr-lstm: A triple encoder for sentence

generation from rdf data,” in Proc. 56th Annu. Meeting Assoc. Comput. Ling., vol. 1,

Jul. 15-20, 2018, pp. 1627–1637.

[236] P. Vougiouklis, H. Elsahar, L.-A. Kaffee, C. Gravier, F. Laforest, J. Hare, and E. Sim-

perl, “Neural wikipedian: Generating textual summaries from knowledge base triples,”

J. of Web Semantics, vol. 52, pp. 1–15, Oct. 2018.

122

[237] Y. Chen, L. Wu, and M. J. Zaki, “Toward subgraph guided knowledge graph question

generation with graph neural networks,” 2020, arXiv:2004.06015.

[238] P. Liu, S. Chang, X. Huang, J. Tang, and J. C. K. Cheung, “Contextualized non-local

neural networks for sequence learning,” 2018, arXiv:1811.08600.

[239] Y. Chen, L. Wu, and M. J. Zaki, “Iterative deep graph learning for graph neural

networks: Better and robust node embeddings,” 2020, arXiv:2006.13009.

[240] L. Franceschi, M. Niepert, M. Pontil, and X. He, “Learning discrete structures for

graph neural networks,” 2019, arXiv:1903.11960.

[241] Wikipedia contributors, “Reinforcement learning — Wikipedia, the free encyclopedia,”

https://en.wikipedia.org/w/index.php?title=Reinforcement learning&oldid=9620124

10 (Accessed Jun. 11, 2020).

[242] M. Kearns and S. Singh, “Near-optimal reinforcement learning in polynomial time,”

Mach. Learn., vol. 49, no. 2-3, pp. 209–232, Nov. 2002.

[243] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “A brief survey

of deep reinforcement learning,” 2017, arXiv:1708.05866.

[244] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau, “An

introduction to deep reinforcement learning,” 2018, arXiv:1811.12560.

[245] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, no. 3-4, pp. 279–292,

May 1992.

[246] G. A. Rummery and M. Niranjan, On-Line Q-Learning Using Connectionist Systems,

vol. 37. Cambridge, U.K.: Univ. Cambridge, 1994.

[247] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-

stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” 2013,

arXiv:1312.5602.

[248] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,

and D. Wierstra, “Continuous control with deep reinforcement learning,” 2015,

arXiv:1509.02971 .

123

[249] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the game of

go with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,

Jan. 2016.

[250] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,

L. Sifre, D. Kumaran, T. Graepel et al., “Mastering chess and shogi by self-play with

a general reinforcement learning algorithm,” 2017, arXiv:1712.01815.

[251] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-

bert, L. Baker, M. Lai, A. Bolton et al., “Mastering the game of go without human

knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017.

[252] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,

E. Lockhart, D. Hassabis, T. Graepel et al., “Mastering atari, go, chess and shogi by

planning with a learned model,” 2019, arXiv:1911.08265.

[253] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H.

Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grandmaster level in starcraft ii using

multi-agent reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, Oct. 2019.

[254] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast quadrupedal

locomotion,” in IEEE Int. Conf. Robot. and Automat., vol. 3, Apr. 26 - May 1, 2004,

pp. 2619–2624.

[255] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can adapt like ani-

mals,” Nature, vol. 521, no. 7553, pp. 503–507, May 2015.

[256] K. Chatzilygeroudis, R. Rama, R. Kaushik, D. Goepp, V. Vassiliades, and J.-B.

Mouret, “Black-box data-efficient policy search for robotics,” in Proc. 2017 IEEE/RSJ

Int. Conf. Intell. Robots and Syst., Sep. 24-28, 2017, pp. 51–58.

[257] P.-H. Su, M. Gasic, N. Mrksic, L. Rojas-Barahona, S. Ultes, D. Vandyke, T.-H. Wen,

and S. Young, “On-line active reward learning for policy optimisation in spoken dia-

logue systems,” 2016, arXiv:1605.07669.

124

[258] B. Dhingra, L. Li, X. Li, J. Gao, Y.-N. Chen, F. Ahmed, and L. Deng, “Towards

end-to-end reinforcement learning of dialogue agents for information access,” 2016,

arXiv:1609.00777.

[259] J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Jurafsky, “Deep reinforcement

learning for dialogue generation,” 2016, arXiv:1606.01541.

[260] J. C. Caicedo and S. Lazebnik, “Active object localization with deep reinforcement

learning,” in Proc. 2015 IEEE Int. Conf. Comput. Vision, Dec. 7-13, 2015, pp. 2488–

2496.

[261] Z. Jie, X. Liang, J. Feng, X. Jin, W. Lu, and S. Yan, “Tree-structured reinforcement

learning for sequential object localization,” in Advances Neural Inf. Process. Syst., Dec.

5-10, 2016, pp. 127–135.

[262] S. Mathe, A. Pirinen, and C. Sminchisescu, “Reinforcement learning for visual object

detection,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit., Jun. 27-30,

2016, pp. 2894–2902.

[263] Y. Ling, S. A. Hasan, V. Datla, A. Qadir, K. Lee, J. Liu, and O. Farri, “Diagnostic

inferencing via improving clinical concept extraction with deep reinforcement learning:

A preliminary study,” in Mach. Learn. for Healthcare Conf., Aug. 18-19, 2017, pp.

271–285.

[264] Y. Liu, O. Gottesman, A. Raghu, M. Komorowski, A. A. Faisal, F. Doshi-Velez, and

E. Brunskill, “Representation balancing mdps for off-policy policy evaluation,” in Ad-

vances Neural Inf. Process. Syst., Dec. 3-8, 2018, pp. 2644–2653.

[265] N. Kallus and A. Zhou, “Confounding-robust policy improvement,” in Advances Neural

Inf. Process. Syst., Dec. 3-8, 2018, pp. 9269–9279.

[266] Y. Gao, L. Wu, H. Homayoun, and L. Zhao, “Dyngraph2seq: Dynamic-graph-to-

sequence interpretable learning for health stage prediction in online health forums,”

2019, arXiv:1908.08497.

125

[267] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Ž́ıdek,

A. W. Nelson, A. Bridgland et al., “Improved protein structure prediction using po-

tentials from deep learning,” Nature, vol. 577, no. 7792, pp. 706–710, Jan. 2020.

[268] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by

reducing internal covariate shift,” 2015, arXiv:1502.03167.

[269] Y. Yang and M.-W. Chang, “S-mart: Novel tree-based structured learning algorithms

applied to tweet entity linking,” 2016, arXiv:1609.08075.

[270] Z. Wang, S. Yan, H. Wang, and X. Huang, “An overview of microsoft deep qa system

on stanford webquestions benchmark,” Microsoft Res., Tech. Rep. MSR-TR-2014-121,

2014.

[271] S. Reddy, O. Täckström, S. Petrov, M. Steedman, and M. Lapata, “Universal semantic

parsing,” in Proc. 2017 Conf. Empirical Meth. Natural Lang. Process., Sep. 9-11, 2017,

pp. 89–101.

[272] P. Baudis and J. Pichl, “Dataset factoid webquestions,” https://github.com/brmson/

dataset-factoid-webquestions (Accessed May 4, 2016).

[273] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word represen-

tation,” in Proc. 2014 Conf. Empirical Meth. Natural Lang. Process., Oct. 25-29, 2014,

pp. 1532–1543.

[274] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014,

arXiv:1412.6980.

[275] K. Lee, S. Salant, T. Kwiatkowski, A. Parikh, D. Das, and J. Berant, “Learning recur-

rent span representations for extractive question answering,” 2016, arXiv:1611.01436.

[276] W. Wang, M. Yan, and C. Wu, “Multi-granularity hierarchical attention fusion net-

works for reading comprehension and question answering,” 2018, arXiv:1811.11934.

[277] C. Clark and M. Gardner, “Simple and effective multi-paragraph reading comprehen-

sion,” 2017, arXiv:1710.10723.

126

[278] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translating

embeddings for modeling multi-relational data,” in Advances Neural Inf. Process. Syst.,

Dec. 5-8, 2013, pp. 2787–2795.

[279] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters in convolutional

neural networks on graphs,” in Proc. IEEE Conf. Comput. Vision and Pattern Recog-

nit., Jul. 21-26, 2017, pp. 3693–3702.

[280] F. W. Levi, Finite Geometrical Systems: Six Public Lectures. Kolkata, India: Univ.

Calcutta, 1942.

[281] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-

chines,” in Proc. 27th Int. Conf. Mach. Learn., Jun. 21-24, 2010, pp. 807–814.

[282] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling for sequence

prediction with recurrent neural networks,” in Advances Neural Inf. Process. Syst.,

Dec. 7-12, 2015, pp. 1171–1179.

[283] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel, “Self-critical sequence

training for image captioning,” in Proc. IEEE Conf. Comput. Vision and Pattern

Recognit., Jul. 21-26, 2017, pp. 7008–7024.

[284] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. Rush, “OpenNMT: Open-source

toolkit for neural machine translation,” in Proc. 55th Annu. Meeting Assoc. Comput.

Ling., Syst. Demonstrations, Jul. 30 - Aug. 4, 2017, pp. 67–72.

[285] W.-t. Yih, M. Richardson, C. Meek, M.-W. Chang, and J. Suh, “The value of semantic

parse labeling for knowledge base question answering,” in Proc. 54th Annu. Meeting

Assoc. Comput. Ling., vol. 2, Aug. 7-12, 2016, pp. 201–206.

[286] A. Talmor and J. Berant, “The web as a knowledge-base for answering complex ques-

tions,” 2018, arXiv:1803.06643.

[287] M. Zhou, M. Huang, and X. Zhu, “An interpretable reasoning network for multi-

relation question answering,” 2018, arXiv:1801.04726.

127

[288] D. P. Kingma, T. Salimans, and M. Welling, “Variational dropout and the local repa-

rameterization trick,” in Advances Neural Inf. Process. Syst., Dec. 7-12, 2015, pp.

2575–2583.

[289] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word embeddings to docu-

ment distances,” in Int. Conf. Mach. Learn., Jul. 6-11, 2015, pp. 957–966.

[290] H. Gong, S. Bhat, L. Wu, J. Xiong, and W.-m. Hwu, “Reinforcement learning based

text style transfer without parallel training corpus,” 2019, arXiv:1903.10671.

[291] Q. Zhou, N. Yang, F. Wei, and M. Zhou, “Sequential copying networks,” in Proc. 32nd

AAAI Conf. Artif. Intell., Feb. 2-7, 2018, pp. 4987–4994.

[292] S. Sheng, L. Van Gool, and M. F. Moens, “A dataset for multimodal question answering

in the cultural heritage domain,” in Proc. Workshop on Lang. Technol. Resour. and

Tools for Digit. Humanities, Dec. 11-17, 2016, pp. 10–17.

[293] A. Kembhavi, M. Seo, D. Schwenk, J. Choi, A. Farhadi, and H. Hajishirzi, “Are you

smarter than a sixth grader? textbook question answering for multimodal machine

comprehension,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit., Jul.

21-26, 2017, pp. 4999–5007.

[294] H. Li, Y. Wang, G. De Melo, C. Tu, and B. Chen, “Multimodal question answering

over structured data with ambiguous entities,” in Proc. 26th Int. Conf. World Wide

Web Companion, Apr. 3-7, 2017, pp. 79–88.

[295] B. Pan, H. Li, Z. Yao, D. Cai, and H. Sun, “Reinforced dynamic reasoning for conver-

sational question generation,” 2019, arXiv:1907.12667.

[296] M. Nakanishi, T. Kobayashi, and Y. Hayashi, “Towards answer-unaware conversa-

tional question generation,” in Proc. 2nd Workshop on Mach. Reading for Question

Answering, Nov. 4, 2019, pp. 63–71.

[297] N. Duan, D. Tang, P. Chen, and M. Zhou, “Question generation for question an-

swering,” in Proc. 2017 Conf. Empirical Meth. Natural Lang. Process., Sep. 2017, pp.

866–874.

128

[298] Z. Yang, J. Hu, R. Salakhutdinov, and W. W. Cohen, “Semi-supervised qa with gen-

erative domain-adaptive nets,” 2017, arXiv:1702.02206.

[299] D. Golub, P.-S. Huang, X. He, and L. Deng, “Two-stage synthesis networks for transfer

learning in machine comprehension,” 2017, arXiv:1706.09789.

[300] D. Tang, N. Duan, Z. Yan, Z. Zhang, Y. Sun, S. Liu, Y. Lv, and M. Zhou, “Learning to

collaborate for question answering and asking,” in Proc. 2018 Conf. N. Amer. Chap.

Assoc. Comput. Ling.: Human Lang. Technol., vol. 1, Jun. 1-6, 2018, pp. 1564–1574.

[301] M. Sachan and E. Xing, “Self-training for jointly learning to ask and answer questions,”

in Proc. 2018 Conf. N. Amer. Chap. Assoc. Comput. Ling.: Human Lang. Technol.,

vol. 1, Jun. 1-6, 2018, pp. 629–640.

[302] H. Xiao, F. Wang, J. Yan, and J. Zheng, “Dual ask-answer network for machine reading

comprehension,” 2018, arXiv:1809.01997.

APPENDIX A

PERMISSIONS

Some figures used in this dissertation are from the following sources:

1. Fig. 2.1 is from https://commons.wikimedia.org/wiki/File:The LSTM c

ell.png, licensed under version 4.0 of the Creative Commons CC-BY license (CC

BY 4.0).

2. Fig. 2.2 is from [185], licensed under version 4.0 of the Creative Commons CC-BY

license (CC BY 4.0).

3. Fig. 2.4 is from [168], licensed under Attribution-NonCommercial-NoDerivs 2.0 Generic

license (CC BY-NC-ND 2.0).

129

